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Preface

The methodology for designing high-performancecomposite structures is still evolv-
ing. The complexity of the response of composite materials and the difficulties in
predicting the composite material properties from the basic properties of the con-
stituents result in the need for a well-planned and exhaustive test program. The
recommended practice to mitigate the technological risks associated with advanced
composite materials is to substantiate the performance and durability of the design
in a sequence of steps known as the Building Block Approach. The Building Block
Approach ensures that cost and performance objectives are met by testing greater
numbers of smaller, less expensive specimens. In this way, technology risks are
assessed early in the program. In addition, the knowledge acquired at a given
level of structural complexity is built up before progressing to a level of increased
complexity.

Achieving substantiation of structural performance by testing alone can be pro-
hibitively expensive because of the number of specimens and components required
to characterize all material systems, loading scenarios and boundary conditions.
Building Block Approach programs can achieve significant cost reductions by seek-
ing a synergy between testing and analysis. The more the development relies on
analysis, the less expensive it becomes. The use of advanced computational models
for the prediction of the mechanical response of composite structures can replace
some of the mechanical tests and can significantly reduce the cost of designing with
composites while providing to the engineers the information necessary to achieve
an optimized design.

This book aims at bringing together the recent developments in the field of com-
putational models for the design of advanced composite structures manufactured
using both polymer and metal matrices. The book addresses latest developments
relevant to virtual design of composite structures at different stages of the product
development process, from manufacturing of the composite material to optimization
of complex composite structures.

This book covers different types of composite materials, ranging from metal-
matrix composites to polymer-matrix composites reinforced with fibers with differ-
ent architectures, and it includes a chapter on the prediction of the thermo-elastic
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properties of thermoplastic composites based on the simulation of the manufactur-
ing process. New methods to predict the mechanical properties of textile-reinforced
composites using advanced discretisation techniques and multiscale approaches are
described. One particular topic that has deserved the attention of the scientific
community is the prediction of crack initiation and propagation in composite struc-
tures, as these structures are very often strength-critical rather than stiffness-critical.
Composite materials exhibit a complex mechanical response that renders the tra-
ditional design methods developed for metals unsuitable to predict the integrity of
composite materials. This book includes contributions that provide detailed repre-
sentations of the different failure mechanisms that occur in composite laminates,
from distributed damage in the matrix, to ply-based failure mechanisms, delami-
nation and their interactions. The computational models presented in the book use
state-of-the-art technologies, such as the Domain Superposition Technique and the
partition-of-unity concept. To take full advantage of the design tailorability of com-
posite materials, optimization techniques should be used; therefore, an optimization
strategy for complex composite structures is also presented in the book.

This book should be attractive to the entire scientific community interested in the
use of advanced computational models to design composite materials and structures.
The book is suitable to be used as a textbook in graduate courses on Mechanical,
Civil, Aeronautical/Aerospace Engineering and Materials Science. In addition, the
Editors envision that the book will also be relevant for the practitioners that need
to be kept up-to-date with the recent developments on computational methods that
support their activities in the optimal design of composite materials and structures.

The Editors would like to express their gratitude to all authors, who made
valuable contributions to the book.
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Department of Aeronautics, Imperial College London
United Kingdom Silvestre T. Pinho

NASA Langley Research Center, United States Carlos G. Dávila

Eindhoven University of Technology
The Netherlands Joris Remmers
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Chapter 1
Computational Methods for Debonding
in Composites

René de Borst and Joris J.C. Remmers

Abstract This contribution starts with a discussion of various phenomena in lam-
inated composite structures that can lead to failure: matrix cracking, delamination
between plies, and debonding and subsequent pull-out between fibres and the matrix
material. The different scales are discussed at which the effect of these nonlinearities
can be analysed. From these scales – the macro, meso and micro-levels – the meso-
level is normally used for the analysis of delamination, which is the focus of this
contribution. At this level, the plies are modelled as continua and interface elements
between them conventionally serve as the framework to model delamination and
debonding. After a a derivation of interface elements and a brief discussion of the
cohesive–zone concept and its importance for the analysis of delamination, a par-
ticular finite element model for the plies is elaborated: the solid–like shell. Next, a
more recent method to numerically model delamination is discussed, which exploits
the partition–of–unity property of finite element shape functions. This approach
offers advantages over interface elements, as will be discussed in detail.

1.1 Introduction

Failure in composites is governed by three mechanisms: matrix cracking, delami-
nation, and fibre debonding and pull-out. Often, matrix cracking occurs first when
loading a specimen. Together with the stress concentrations that occur near free
edges and around holes, matrix cracks trigger delamination. Normally, delamina-
tion is defined as the separation of two plies of a laminated composite, although
it has been observed that delamination not necessarily occurs exactly at the inter-
face between two plies. For instance, in fibre-metal laminates delamination rather

R. de Borst and J.J.C. Remmers
Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600
MB Eindhoven, The Netherlands, e-mail: {r.d.borst,j.j.c.remmers}@tue.nl
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resembles a matrix crack in the epoxy layer near and parallel to the aluminium-
epoxy interface.

An important issue when modelling physical phenomena is the proper definition
of the scale at which the (failure) mechanism under consideration is modelled. This
holds a fortiori for composites, since the in-plane dimensions of a laminated com-
posite structure exceed the length scale at which delamination, matrix cracking and
fibre debonding take place by one to several orders of magnitude. This complicates
an efficient, accurate and meaningful analysis. Typically, the in-plane dimensions
of a laminated structure are in the order of meters, while its thickness can be just a
few millimeters. Each ply is then less than a millimeter thick. Since, at least in con-
ventional finite element analysis, each ply has to be modelled separately in order to
capture delamination between two plies, and since the aspect ratio of finite elements
is limited if one wishes to obtain a reliable stress prediction, the maximum in-plane
dimension of a three-dimensional solid element will be around 1 cm. It is obvious
that the number of elements that is needed to model each layer is already big, and
the total number of elements required to model the entire structure, including possi-
ble holes and stiffened areas, can easily exceed computational capabilities when the
analyst wishes to simulate nonlinear phenomena, such as delamination.

The same reasoning holds when considering matrix cracking. For most laminated
composites, matrix cracks reach a saturation distance, which is in the order of the
ply thickness. This implies that, when this phenomenon is to be included in the
analysis in a truly discrete format – that is, matrix cracks are modelled individually
and not smeared out over the plane – the in-plane discretisation must even be some-
what finer than for an analysis that includes delamination only, roughly one order of
magnitude.

A further refinement of the discretisation of several orders of magnitude is
required when individual fibres are to be modelled with the aim to include debond-
ing and pull-out of individual fibres. It is evident, that such a type of modelling
exceeds computational capabilities even of the most powerful computers nowadays
available, if the analysis would consider the entire structure.

Multiscale approaches provide a paradigm to by-pass the problems outlined
above. In these methods, the various aspects of the entire structural problem are
considered at different levels of observation, each of them characterised by a well-
defined length scale. The different levels at which analyses are carried out, are
connected either through length scale transitions, in which the structural behaviour
at a given level is homogenised to arrive at mechanical properties at a next higher
level [12], or through (finite element) analyses which are conducted at two levels
simultaneously and in which are connected by matching the boundary conditions at
both levels [10]. In the former class of methods, the Representative Volume Element
(RVE), the volume of heterogeneous material that can be considered as represen-
tative at a given level of observation and is therefore amenable to homogenisation,
plays an important role.

This contribution will not address methods for length scale transition or app-
roaches for carrying out multi-level finite element analyses. Instead, we shall
focus on so-called meso-level approaches, in which delamination is assumed to
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be the main degrading mechanism. For this purpose, the different levels of anal-
ysis – macro, meso and micro – are defined in the context of laminated composite
structures. At the meso-level as well as at the micro-level, fracture along internal
material boundaries, delamination and debonding, respectively, governs the failure
behaviour. Most constitutive relations for such interfaces have in common that a
so-called work of separation or fracture energy plays a central role. For this rea-
son, a succinct discussion of cohesive-zone models, which are equipped with such
a material parameter is included in the discussion.

Next, a solid-like shell elements will be introduced, which can be used to model
the plies in a 3D-like manner, but allowing for much larger aspect ratios (up to
1,000) than standard solid elements would do. The second part of this contribu-
tion discusses a fairly recent development in numerical models for fracture, namely
the partition-of-unity method. It exploits the partition-of-unity property of finite
element shape functions and allows discontinuities to be inserted during a finite ele-
ment analysis, either within a matrix, or, as used here, along interfaces between two
materials. The concept will be elaborated for large displacement gradients, for the
solid-like shell element discussed before and will be complemented by illustrative
examples.

1.2 Levels of Observation

At the macroscopic or structural level the plies are normally modelled via a layered
shell approach, where the different directions of the fibres in the layers are taken into
account through an anisotropic elasticity model, Fig. 1.1. If this (anisotropic) elas-
ticity model is augmented by a damage or plasticity model, degradation phenomena
like matrix cracking, fibre pull-out or fibre breakage can also be taken into account,

Fig. 1.1 Shell element for
macroscopic analysis of a
laminated composite structure
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albeit in a smeared manner. At this level, the in-plane structural dimensions are the
length scales that govern the boundary-value problem.

Indeed, discrete modelling of delamination, matrix cracking and debonding of
fibres is not possible at this level. The level below, where the ply thickness becomes
the governing length scale, allows for the modelling of delamination and matrix
cracking. At this meso-level the plies are modelled as continua and can either be
assumed to behave linearly elastically or can be degraded according to a damage
law. In the approach suggested in [19, 20], elastic anisotropy and curing of com-
posites are taken into account by including possible thermal and hygral effects,
but eventual damage which can evolve in the plies is lumped into the interface.
This approach is reasonable as long as the energy dissipation due to processes like
matrix cracking is small compared to the energy needed for delamination growth,
as for mode-I delaminations and for mixed-mode delaminations where the fibres are
(almost) parallel to the intralaminar cracks. If this condition is not met, the interface
delamination model must be supplemented by a damage model for the ply, which
has been proposed in [3]. A drawback of existing damage approaches for modelling
intralaminar cracks, fibre breakage and debonding is that no localisation limiter is
incorporated, which renders the governing equations ill-posed at a generic stage in
the loading process and can result in a severe dependence of the results on the spatial
discretisation [7].

At the meso-level, delamination as a discrete process has conventionally been
modelled as shown in Fig. 1.2, where the plies are considered as continua – and are
discretised using standard finite elements – while the delamination is modelled in a
discrete manner using special interface elements [1–3,8,19,20]. Generalised plane-
strain elements are often used to model free-edge delamination [19,20], while stacks
of solid or shell elements and interface elements are applicable to cases of delami-
nation near holes or other cases where a three-dimensional modelling is necessary
(e.g. [22]).

The greatest level of detail is resolved in the analysis if the fibres are mod-
elled individually. In such micro-level analyses the governing length scale is the
fibre diameter. Possible debonding between fibre and matrix material is normally

Fig. 1.2 Finite element model
of a laminated composite. The
individual layers are mod-
elled with three-dimensional,
generalised plane-strain or
shell elements. Interface
elements equipped with a
cohesive-zone model are
applied between the layers
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6.4 [µm] θ

Fig. 1.3 Layer which is unidirectionally reinforced with long fibres (above) and finite element
discretisations for three different levels of refinement of a representative volume element composed
of a quarter of a fibre, the surrounding epoxy matrix and the interface between fibre and epoxy [21]

modelled via interface elements, equipped with cohesive-zone models, quite similar
to models for delamination. An example is given in Fig. 1.3, which shows an epoxy
layer, which has been reinforced uniaxially by long fibres, together with three levels
of mesh refinement for a Representative Volume Element of the layer.

1.3 Zero-Thickness Interface Elements

The classical way to represent discontinuities in solids is to introduce zero-thickness
interface elements between two neighbouring (solid) finite elements, e.g. Fig. 1.2 for
a planar interface element. The governing kinematic quantities in interfaces are rela-
tive displacements: vn,vs,vt for the normal and the two sliding modes, respectively.
When collecting these relative displacements in a relative displacement vector v,
they can be related to the displacements at the upper (+) and lower sides (−) of the
interface, u−n ,u+

n ,u−s ,u+
s ,u−t ,u+

t , by

v = Lu (1.1)

with uT = (u−n , ...........,u+
t ) and L an operator matrix:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
+1 0 0

0 −1 0
0 +1 0
0 0 −1
0 0 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.2)
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The displacements contained in the array u are interpolated in a standard manner, as

u = Ha (1.3)

where
H = diag

[
h h h h h h

]
(1.4)

with h a 1×N matrix containing the interpolation polynomials, and a the element
nodal displacement array,

a =
(
a1

n, ......,a
N
n ,a1

s , ......,a
N
s ,a1

t , ......,a
N
t

)T
(1.5)

with N the total number of nodes in the interface element. The relation between
nodal displacements and relative displacements for interface elements is now derived
from Eqs. (1.1) and (1.3) as:

v = LHa = Bia (1.6)

where the relative displacement-nodal displacement matrix Bi for the interface
element reads:

Bi =

⎡⎢⎣−h h 0 0 0 0
0 0 −h h 0 0
0 0 0 0 −h h

⎤⎥⎦ (1.7)

For an arbitrarily oriented interface element the matrix Bi subsequently has to be
transformed to the local coordinate system of the integration point or node-set.

For analyses of fracture propagation that exploit interface elements, cohesive-
zone models [5, 9, 25] are used almost exclusively. In this class of fracture models,
a discrete relation is adopted between the interface tractions ti and the relative
displacements v:

ti = ti(v,κ) (1.8)

with κ a history parameter. After linearisation, necessary to use a tangential stiffness
matrix in an incremental-iterative solution procedure, one obtains:

ṫi = Tv̇ (1.9)

with T the material tangent stiffness matrix of the discrete traction-separation law:

T =
∂ ti

∂v
+

∂ ti

∂κ
∂κ
∂v

(1.10)

A key element is the presence of a work of separation or fracture energy, Gc, which
governs crack growth and enters the interface constitutive relation Eq. (1.8) in addi-
tion to the tensile strength ft . It is defined as the work needed to create a unit area
of fully developed crack:

Gc =
∫ ∞

vn=0
σdvn (1.11)
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f
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Fig. 1.4 Stress-displacement curves for ductile separation (left) and for quasi-brittle separation
(right)

with σ the stress across the fracture process zone. It thus equals the area under the
decohesion curves as shown in Fig. 1.4. Evidently, cohesive-zone models as defined
above are equipped with an internal length scale, since the quotient Gc/E , with E a
stiffness modulus for the surrounding continuum, has the dimension of length.

Conventional interface elements have to be inserted in the finite element mesh at
the beginning of the computation, and therefore, a finite stiffness must be assigned
in the pre-cracking phase with at least the diagonal elements being non-zero. Prior
to crack initiation, the stiffness matrix in the interface element therefore reads:

T =

⎡⎢⎣ dn 0 0
0 ds 0
0 0 dt

⎤⎥⎦ (1.12)

with dn the stiffness normal to the interface and ds and dt the tangential stiffnesses.
With the material tangent stiffness matrix T, the element tangent stiffness matrix
can be derived in a straightforward fashion, starting from the weak form of the
equilibrium equations, as:

K =
∫

Γi

BT
i TBidΓ (1.13)

where the integration domain extends over the surface of the interface Γi. For com-
parison with methods that will be discussed in the remainder of this paper, we
expand the stiffness matrix in the pre-cracking phase [18]:

K =

⎡⎢⎣Kn 0 0
0 Ks 0
0 0 Kt

⎤⎥⎦ (1.14)

with the submatrices Kπ , π = n,s,t defined as:

Kπ = dπ

[
hTh −hTh

−hTh hTh

]
(1.15)

with dπ the (dummy) stiffnesses in the interface prior to crack initiation.
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An example where the potential of cohesive-zone models can be exploited fully
using conventional discrete interface elements, is the analysis of delamination in
layered composite materials [3, 19, 20]. Since the propagation of delaminations is
restricted to the interfaces between the plies, inserting interface elements at these
locations permits an exact simulation of the failure mode.

Due to mismatch of the Poisson effect between the layers of a laminated struc-
ture, caused by the different orientation of the fibres, interlaminar stresses will
develop between the plies at the free edges. At a generic stage in the loading
process, these edge stresses will lead to delamination. Depending on the stacking
sequence of the laminate and the position of the delamination zone in the lami-
nate, delamination occurs purely as mode-I delamination or as delamination due
to a combination of several cracking modes, so-called mixed-mode delamination.
For the three-dimensional example of Fig. 1.5, we will consider a lay-up that causes
pure mode-I delamination, which is the dominant mode if delamination occurs in the
mid-plane of a symmetric laminate. Consequently, only the upper (or equivalently,
the lower) half of the laminate needs to be analysed. The interface delamination
model was based on a damage formalism, see [22] for details.

The strip that has been analysed, has a laminate lay-up of [25,−25,90]s and is
manufactured of an AS-3501-06 graphite-epoxy. The specimen that has been anal-
ysed is depicted in Fig. 1.6 in more detail. The linear elastic ends of the specimen
are a simplification of the real situation in an experiment and have been included
in the analyses to limit the influence of the boundary conditions. Furthermore, to
reduce the computation time, the radius of the transition zone has been taken fairly

loading
direction

delamination

area with uniform delamination

cross-section used in 
two-dimensional analyses

Fig. 1.5 T-bone shaped AS-3501-06 graphite-epoxy laminated strip subjected to uniaxial loading

30 mm

x

elastic zone2 mm
s

5 mm

R = 50 mm
y

10 mm

Fig. 1.6 Quarter of T-bone shaped laminated strip
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Fig. 1.7 COD vs axial stress
for the full T-bone specimen
and for an approximated 3D
solution using the rectangular
specimen of Fig. 1.8
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Fig. 1.8 Quarter of the rectangular specimen used in the approximate 3D solutions

small compared to data suggested in norms. The COD versus axial stress, measured
as the average stress in the narrow part of the strip, is shown in Fig. 1.7.

Numerical solutions of boundary-value problems involving materials that show
a descending branch after reaching a peak load level, can be highly mesh sensi-
tive, e.g. [7]. However, in the present situation, where the degrading phenomena are
limited to a discrete interface where the crack opening is controlled by a fracture
energy (cohesive-zone approach), the boundary value problem remains well-posed
and, consequently, no mesh sensitivity should be observed. This is confirmed in a
mesh refinement study of a three-dimensional rectangular plate, Fig. 1.8, which is
used to approximate the original T-bone specimen, but, because of its simpler geom-
etry, is less expensive in mesh refinement studies. The load-displacement curves for
the original T-bone specimen and the approximate 3D specimen are close, Fig. 1.7,
justifying the approximation for the purpose of a mesh refinement study.

Three different meshes have been used in the calculations. The coarse mesh con-
sisted of 20 elements over the width and 25 elements over the length of the plate.



www.manaraa.com

10 R. de Borst and J.J.C. Remmers

Fig. 1.9 Mesh sensitivity
studies for the 3D rectangular
specimen
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Fig. 1.10 Evolution of the delamination zone in simplified three-dimensional analysis

For the two finer meshes the element distribution over the width was not equidistant.
For the 2.5 mm of the width of the plate closest to the free edge a finer mesh was
used. This leads to 35 elements over the width and 25 elements over the length of
the plate for the second mesh and to 70 elements over the width and 50 elements
over the length of the place for the finest mesh. The crack opening displacement of a
node near the centre of the free edge has been plotted versus the applied axial stress
for all three meshes in Fig. 1.9. No mesh sensitivity can be noticed. In Fig. 1.10
the delamination zone of the plate is shown at several stages during the computa-
tion. Until the peak load the delamination is uniform, since the slight waviness is
purely due to visualisation aspects. However, in the descending branch of Fig. 1.9
the delamination zone becomes more and more non-uniform.

Figure 1.11 shows an example of a uniaxially loaded laminate that fails under
mixed-mode loading. Experimental and numerical results (which were obtained
before the tests were carried out) show an excellent agreement, Fig. 1.11, which



www.manaraa.com

1 Computational Methods for Debonding in Composites 11

b

h

ε11

ε11

θr1

r2

r3

8 16 24
0.0

0.25

0.5

0.75

1.0

n=1 n=2 n=3

number of plys

% ε u

∆

∆
∆

+

+
+

Fig. 1.11 Left: Uniaxially loaded laminated strip. Right: Computed and experimentally determined
values for the ultimate strain εu as a function of the number of plies [20]. Results are shown for
laminates consisting of 8 plies (n = 1), 16 plies (n = 2) and 24 plies (n = 3). The triangles, which
denote the numerical results, are well within the band of experimental results. The dashed line
represents the inverse dependence of the ultimate strain on the laminate thickness

100 mm

20 mm

250 mm

P=1000 N 

Fig. 1.12 Left: Geometry of symmetric, notched three-point bending beam. Right: Traction profiles
ahead of the notch using linear interface elements with Gauss integration. Results are shown for
different values of the ‘dummy’ stiffness D = dn in the pre-cracking phase [18]

gives the ultimate strain of the sample for different numbers of plies in the lami-
nate [20]. A clear thickness (size) effect is obtained as a direct consequence of the
inclusion of the fracture energy in the model.

As stipulated, conventional interface elements have to be inserted a priori in the
finite element mesh. The undesired elastic deformations can be largely suppressed
by choosing a high value for the stiffness dn. However, the off-diagonal coupling
terms of the submatrix hTh that enters the stiffness matrix of the interface elements,
cf. Eq. (1.15), can lead to spurious traction oscillations in the pre-cracking phase
for high stiffness values [18]. This, in turn, may cause erroneous crack patterns.
An example of an oscillatory traction pattern ahead of a notch is given in Fig. 1.12.
Moreover, when analysing dynamic fracture, spurious wave reflections can occur as
a result of the introduction of such artificially high stiffness values prior to the onset
of delamination. Thirdly, the necessity to align the mesh with the potential planes
of delamination, restricts the modelling capabilities.
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1.4 Solid-Like Shell Formulation

We consider the thick shell shown in Fig. 1.13. The position of a material point in
the shell in the undeformed configuration can be written as a function of the three
curvilinear coordinates [ξ ,η ,ζ ]:

X(ξ ,η ,ζ ) = X0(ξ ,η)+ ζD(ξ ,η) (1.16)

where X0(ξ ,η) is the projection of the point on the mid-surface of the shell and
D(ξ ,η) is the thickness director in this point:

X0(ξ ,η) =
1
2

[
Xt(ξ ,η)+ Xb(ξ ,η)

]
(1.17)

D(ξ ,η) =
1
2

[
Xt(ξ ,η)−Xb(ξ ,η)

]
(1.18)

The subscripts (·)t and (·)b denote the projections of the variable onto the top and
bottom surface, respectively. The position of the material point in the deformed
configuration x(ξ ,η ,ζ ) is related to X(ξ ,η ,ζ ) via the displacement field φφφ (ξ ,η ,ζ )
according to:

x(ξ ,η ,ζ ) = X(ξ ,η ,ζ )+φφφ(ξ ,η ,ζ ) (1.19)

where:
φφφ(ξ ,η ,ζ ) = u0(ξ ,η)+ ζu1(ξ ,η)+ (1− ζ 2)u2(ξ ,η) (1.20)

In this relation, u0 and u1 are the displacements of X0 on the shell mid-surface, and
the thickness director D, respectively:

u0(ξ ,η) =
1
2

[
ut(ξ ,η)+ ub(ξ ,η)

]
(1.21)

u1(ξ ,η) =
1
2

[
ut(ξ ,η)−ub(ξ ,η)

]
(1.22)

and u2(ξ ,η) denotes the internal stretching of the element, which is colinear
with the thickness director in the deformed configuration and is a function of an
additional ‘stretch’ parameter w:

u2(ξ ,η) = w(ξ ,η)[D+ u1(ξ ,η)] (1.23)

u0

undeformed deformed

D

X
x

i

i

1

2

i3
X0

φφφ

u1

u2

ξ

ζ

top

mid

bottom

mid surface

top surface

Dη

bottom surface

Fig. 1.13 Kinematic relations of the solid-like shell element
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The displacement field φφφ is considered as a function of two kinds of variables; the
ordinary displacement field u, which will be split in a displacement of the top and
bottom surfaces ut and ub, respectively, and the internal stretch parameter w:

φφφ = φφφ(ut ,ub,w) (1.24)

The derivation of the strains and the finite element formulation can be found in [15],
or in [17].

Using the solid-like shell element, the behaviour of a Glare panel with a circu-
lar initial delamination and a sinusoidally shaped out-of-plane imperfection (with
an amplitude of 0.003 mm) subject to a compressive load has been examined. The
failure mechanism is slightly complicated, since the delaminated zone grows in a
direction perpendicular to the main loading direction. As a result, the delaminated
area transforms from a circular area into an ellipsoidal one. Consequently, the buck-
ling mode will change as well, and some parts of the top layer will tend to move
inwards. For this reason, the possibility of self-contact has been included and a
contact algorithm has been activated.

The specimen of Fig. 1.14 consists of an aluminium layer with thickness h1 = 0.2
mm and a Glare3 0/90◦ prepreg layer with a thickness h2 = 0.25 mm. An initially
circular delamination area with radius 8 mm is assumed. The layers are attached to

x

y

σx

σy

σy

z

x

σx 40 mm

40 mm

delaminaton

Al 7075 backing plate

R

Al 2024-T3, 0.2 mm

= 8 mm

Glare3 prepreg, 0.25 mm

Fig. 1.14 Geometry of a Glare panel with a circular initial delamination
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Fig. 1.15 Mesh used for the
simulation of delamination
growth in the Glare panel. The
initial delamination is located
at the darker elements. Note
that just one quarter of the
panel (x > 0, y > 0) has been
modelled

y

x

Table 1.1 Material parameters for 0/90◦ Glare3

E11 [MPa] E22 [MPa] E33 [MPa] G12 [MPa] G23 [MPa] G13 [MPa] ν12 ν23 ν13

33,170 33,170 9,400 5,500 5,500 5,500 0.195 0.032 0.06

a thick backing plate in order to prevent global buckling. A uniaxial compressive
loading in x-direction is considered (σx = −σ0, σy = 0.0).

The finite element mesh is shown in Fig. 1.15. The material parameters for
the Glare3 layer are taken from [11], see Table 1.1. The ultimate traction in nor-
mal direction in tension and compression are assumed to be t̄t

n = 50 MPa and
t̄ c
n = 150 MPa, respectively, and the ultimate traction in the two transverse direc-

tions equals t̄s1 = t̄s2 = 25 MPa. The work of separation is Gc = 1.1 N/mm. An initial
stiffness of the interface elements of dn = 50,000 N/mm2 has been assumed.

The analytical estimation for the local buckling load of a clamped unidirec-
tional panel with thickness h1 subjected to an axial compressive load σ0 has been
derived in [23]. For this configuration, the lowest critical buckling load is equal to
σ0 = 113.2 MPa.

For the contact algorithm the penalty stiffness has been set equal to the initial
stiffness of the interface elements with the delamination model, dpen = 50,000 MPa.
The out-of-plane displacement of the centre point of the panel is shown in Fig. 1.16.
The local buckling load is in agreement with an eigenvalue analysis [16]. Initial
delamination growth does not start until a load level σ0 = 300 MPa, while progres-
sive delamination begins at an external load level σ0 ≈ 950 MPa. As this value is far
beyond normal stress levels, the analysis suggests that delamination buckling is of
little concern in uniaxially compressed Glare panels. As expected, the delamination
extends in a direction perpendicular to the loading direction, Fig. 1.17.
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Fig. 1.16 Out-of-plane dis-
placement of top layer versus
applied axial compressive
load σ0. The dashed line
corresponds to the critical
buckling load obtained by an
eigenvalue analysis [16]
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Fig. 1.17 Final deformation
of the Glare laminate under
uniaxial loading [16]
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1.5 The Partition-of-Unity Concept

Recently, a method has emerged in which a discontinuity in the displacement field
is captured exactly. It has the added benefit that it can be used advantageously at
different scales, from microscopic to macroscopic analyses. The method exploits
the partition-of-unity property of finite element shape functions [4]. A collection
of functions φi, associated with nodes i, form a partition of unity if ∑n

i=1 φi(x) = 1
with n the number of discrete nodal points. For a set of functions φi that satisfy this
property, a field u can be interpolated as follows:

u(x) =
n

∑
i=1

φi(x)

(
āi +

m

∑
j=1

ψ j(x)ãi j

)
(1.25)

with āi the ‘regular’ nodal degrees-of-freedom, ψ j(x) the enhanced basis terms, and
ãi j the additional degrees-of-freedom at node i which represent the amplitudes of
the jth enhanced basis term ψ j(x). In conventional finite element notation we can
thus interpolate a displacement field as:

u = N(ā+ Ñã) (1.26)

where N contains the standard shape functions, Ñ the enhanced basis terms and
ā and ã collect the conventional and the additional nodal degrees-of-freedom,
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Fig. 1.18 Body composed
of continuous displacement
fields at each side of the
discontinuity Γd

tp
Γt

up

Γu

nΓd

Γ = ∂Ω

Γd

Ω+

Ω−

respectively. A displacement field that contains a single discontinuity, Fig. 1.18, can
be represented by choosing [6, 14]:

Ñ = HΓd I (1.27)

where Hd is the Heaviside function which is equal to 1 when x ∈ Ω+ and equal to
0 when x ∈ Ω−.

Substitution into Eq. (1.26) gives

u = Nā︸︷︷︸
ū

+HΓd Nã︸︷︷︸
ũ

(1.28)

Identifying ū = Nā and ũ = Nã we observe that Eq. (1.28) exactly describes a dis-
placement field that is crossed by a single discontinuity, but is otherwise continuous.
Accordingly, the partition-of-unity property of finite element shape functions can
be used in a straightforward fashion to incorporate discontinuities in a manner that
preserves their discontinuous character.

We take the balance of momentum

∇ ·σσσ + ρg = 0 (1.29)

as point of departure and multiply this identity by test functions www, taking them from
the same space as the trial functions for u,

www = w̄ww+HΓdw̃ww (1.30)

Applying the divergence theorem and requiring that this identity holds for arbitrary
w̄̄w̄w and w̃̃w̃w yields the following set of coupled equations:∫

Ω
∇symw̄̄w̄w : σσσdΩ =

∫
Ω

w̄̄w̄w ·ρgdΩ +
∫

Γ
w̄̄w̄w · tdΓ (1.31)

∫
Ω+

∇symw̃̃w̃w : σσσdΩ +
∫

Γd

w̃̃w̃w · tidΓ =
∫

Ω+
w̃̃w̃w ·ρgdΩ +

∫
Γ

HΓd w̃̃w̃w · tdΓ (1.32)

where in the volume integrals the Heaviside function has been eliminated by a
change of the integration domain from Ω to Ω+. With the standard interpolation:
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ū = Nā, ũ = Nã

w̄̄w̄w = Nw̄, w̃̃w̃w = Nw̃
(1.33)

and requiring that the resulting equations must hold for any admissible w̄ and w̃, we
obtain the discrete format:∫

Ω
BTσσσdΩ =

∫
Ω

ρBTgdΩ +
∫

Γ
NTtdΓ (1.34)

∫
Ω+

BTσσσdΩ +
∫

Γd

NTtddΓ =
∫

Ω+
ρBTgdΩ +

∫
Γ

HΓd NTtdΓ (1.35)

After linearisation, the following matrix-vector equation is obtained:[
Kāā Kāã

Kãā Kãã

](
dā
dã

)
=

(
fext
ā − fint

ā

fext
ã − fint

ã

)
(1.36)

with fint
ā , fint

ã given by the left-hand sides of Eqs. (1.31)–(1.32), fext
ā , fext

ã given by the
right-hand sides of Eqs. (1.31)–(1.32) and

Kāā =
∫

Ω
BTDBdΩ (1.37)

Kāã =
∫

Ω+
BTDBdΩ (1.38)

Kãā =
∫

Ω+
BTDBdΩ (1.39)

Kãã =
∫

Ω+
BTDBdΩ +

∫
Γd

NTTdΓ (1.40)

If the material tangential stiffness matrices of the bulk and the interface, D and T
respectively, are symmetric, the total tangential stiffness matrix remains symmetric.
It is emphasised that in this concept, the additional degrees-of-freedom cannot be
condensed at element level, because it is node-oriented and not element-oriented. It
is this property which makes it possible to represent a discontinuity such that it is
continuous at interelement boundaries.

The partition-of-unity property of finite element shape functions is a powerful
method to introduce cohesive surfaces in continuum finite elements [13, 26, 27].
Using the interpolation of Eq. (1.28) the relative displacement at the discontinuity
Γd is obtained as:

v = ũ |x∈Γd (1.41)

and the tractions at the discontinuity are derived from Eq. (1.8). A key feature of the
method is the possibility of extending a (cohesive) crack during the calculation in
an arbitrary direction, independent of the structure of the underlying finite element
mesh. It is also interesting to note that the field ũ does not have to be constant. The
only requirement that is imposed is continuity.
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When the discontinuity coincides with a side of the element, the traditional inter-
face element formulation is retrieved. For this, we expand the term in Kãã which
relates to the discontinuity as

∫
Γi

HTTHdΓ =

⎡⎢⎣Kn 0 0
0 Ks 0
0 0 Kt

⎤⎥⎦ (1.42)

with Kπ = dπ hTh, cf. [24], which closely resembles Eqs. (1.14)–(1.15). Defining
the sum of the nodal displacements ā and ã as primary variable a on the + side of
the interface and setting a = ā at the – side and rearranging then leads to the standard
interface formulation.

However, even though formally the matrices can coincide for the partition–of–
unity based method and for the conventional interface formulation, both concepts
are quite different. Indeed, simulations of delamination using the partition-of-unity
property of finite element shape functions offer advantages. Because the discontinu-
ity does not have to be inserted a priori, no (dummy) stiffness is needed in the elastic
regime. Indeed, there does not have to be an elastic regime, since the discontinuity
can be activated at the onset of cracking. Consequently, the issue of spurious traction
oscillations in the elastic phase becomes irrelevant. Also, the lines of the potential
delamination planes no longer have to coincide with element boundaries. They can
lie at arbitrary locations inside elements and unstructured meshes can be used.

The above approach for capturing discontinuities can be generalised to large dis-
placement gradients in a straightforward and consistent manner. To this end, one
extends Eq. (1.28) as:

x = X+ ū+HΓ 0
d

ũ (1.43)

with HΓ 0
d

the Heaviside function at the interface in the reference configuration, Γ 0
d .

The deformation gradient follows by differentiation:

F = F̄+HΓ 0
d

F̃+ δΓ 0
d
(ũ⊗nΓ 0

d
) (1.44)

with F̄ = III + ∂ ū/∂X, F̃ = ∂ ū/∂X and δΓ 0
d

the Dirac function at the interface in the
reference configuration.

With aid of Nanson’s relation for the normal n to a surface Γ :

n = detF(F−T)nΓ 0
dΓ 0

dΓ
(1.45)

the expressions for the normals at the − side and at the + side of the interface can
be derived:

nΓ −
d

= det F̄(F̄−T)nΓ 0
d

dΓ 0
d

dΓ −
d

(1.46a)

nΓ +
d

= det(F̄+ F̃)(F̄+ F̃)−TnΓ 0
d

dΓ 0
d

dΓ +
d

(1.46b)
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Fig. 1.19 Body crossed by a
discontinuity Γd with normals
nΓ−

d
and nΓ +

d
at both sides of

the discontinuity

n

n
Γd
−

+
Γd

see Fig. 1.19. Distinction between nΓ −
d

and nΓ +
d

is possible because ũ is not spa-
tially constant. In the cohesive-zone approach, interface tractions ti are transmitted
between Γ − and Γ + with different normals nΓ −

d
and nΓ +

d
. In a heuristic assump-

tion, it has been assumed that an average normal can be defined for use within the
cohesive-zone model [26]:

nΓ ∗
d

= det(F̄+
1
2

F̃)(F̄ +
1
2

F̃)−TnΓ 0
d

dΓ 0
d

dΓ ∗
d

(1.47)

We now recall the equilibrium equation in the current configuration, cf. Eq. (1.29):

∇x ·σσσ + ρg = 0

In a Bubnov-Galerkin method the test functions www for a single discontinuity are
given by:

www = w̄̄w̄w+HΓ 0
d

w̃̃w̃w (1.48)

Multiplying with this test function, integrating over the current domain Ω and
requiring that the result holds for arbitrary w̄̄w̄w and w̃̃w̃w yields:∫

Ω
∇xw̄̄w̄w : σσσdΩ =

∫
Ω

w̄̄w̄w ·ρgdΩ +
∫

Γ
w̄̄w̄w · tdΓ (1.49a)

∫
Ω+

∇xw̃̃w̃w : σσσdΩ +
∫

Γd

w̃̃w̃w · tidΓ =
∫

Ω+
w̃̃w̃w ·ρgdΩ +

∫
Γ

HΓd w̃̃w̃w · tdΓ (1.49b)

with the subscript x signifying differentiation with respect to the current configura-
tion and td = nΓ ∗

d
·σσσ the traction at the discontinuity in the current configuration.

With a standard interpolation:

w̄̄w̄w = Nw̄, w̃̃w̃w = Nw̃ (1.50)

where N contains the interpolation polynomials and w̄ and w̃ contain the discrete
values for the test functions, the discrete format of Eqs. (1.49a)–(1.49b) reads:∫

Ω
BTσσσdΩ =

∫
Ω

ρBTgdΩ +
∫

Γ
NTtdΓ (1.51a)
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Fig. 1.20 Double cantilever
beam with initial delami-
nation under compression
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h=0.2
0
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∫
Ω+

BTσσσdΩ +
∫

Γd

NTtidΓ =
∫

Ω+
ρBTgdΩ +

∫
Γ

HΓd NTtdΓ (1.51b)

After substitution of the constitutive relations for the plies and that for the interface,
and transforming back to the reference configuration, a nonlinear set of algebraic
equations results, which can be solved in a standard manner using an incremental-
iterative procedure. If a Newton-Raphson procedure is used, these equations have to
be linearised in order to derive the structural tangential stiffness matrix [26].

To exemplify the possibilities of this approach to model the combined failure
mode of delamination growth and local buckling we consider the double cantilever
beam of Fig. 1.20 with an initial delamination length a = 10 mm. Both layers are
made of the same material with Young’s modulus E = 135,000 N/mm2 and Pois-
son’s ratio ν = 0.18. Due to symmetry in the geometry of the model and the applied
loading, delamination propagation can be modelled with an exponential mode-I
decohesion law:

tn
dis = tult exp

(
− tult

Gc
vn

dis

)
(1.52)

where tn
dis and vn

dis are the normal traction and displacement jump respectively.
The ultimate traction tult is equal to 50 N/mm2, the work of separation is Gc =
0.8 N/mm.

This case, in which failure is a consequence of a combination of delamination
growth and structural instability, has been analysed using conventional interface
elements in [2]. The beam is subjected to an axial compressive force 2P, while
two small perturbing forces P0 are applied to trigger the buckling mode. Two finite
element discretisations have been employed, a fine mesh with three elements over
the thickness and 250 elements along the length of the beam, and a coarse mesh
with only one (!) element over the thickness and 100 elements along the length.
Fig. 1.21 shows that the calculation with the coarse mesh approaches the results for
the fine mesh closely. For instance, the numerically calculated buckling load is in
good agreement with the analytical solution. Steady-state delamination growth starts
around a lateral displacement u = 4 mm. From this point onwards, delamination
growth interacts with geometrical instability. Fig. 1.22 presents the deformed beam
for the coarse mesh at a tip displacement u = 6 mm. Note that the displacements are
plotted at true scale, but that the difference in displacement between the upper and
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Fig. 1.21 Load-displacement
curves for delamination-
buckling test
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Fig. 1.22 Deformation of coarse mesh after buckling and delamination growth (true scale)

lower parts of the beam is for the major part due to the delamination and that the
strains remain small.

1.6 Delamination in a Solid-Like Shell Element

The excellent results obtained in this example for the coarse discretisation have
motivated the development of a layered plate/shell element in which delaminations
can occur inside the element between each of the layers [17]. Because of the absence
of rotational degrees-of-freedom, the solid-like shell element was taken as a point
of departure. The shell of Fig. 1.23 is crossed by a discontinuity surface Γ 0

d which is
assumed to be parallel to the mid-surface of the thick shell. The displacement field
φφφ(ξ ,η ,ζ ) can now be regarded as a continuous regular field φ̄φφ with an additional
continuous field φ̃φφ that determines the magnitude of the displacement jump. The
position of a material point in the deformed configuration can then be written as:

x = X+ φ̄φφ +HΓ 0
d

φ̃φφ (1.53)
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geometrical node

internal node

Fig. 1.23 Enhanced nodes (black) whose support contains a discontinuity (grey surface). The
nodes on the edge of the discontinuity are not enhanced in order to ensure a zero delamination
opening at the tip

Since the displacement field φφφ is a function of the variables ut , ub and w, we need
to decompose these three terms as:

ut = ūt +HΓ 0
d

ũt

ub = ūb +HΓ 0
d

ũb

w = w̄+HΓ 0
d

w̃

(1.54)

Inserting Eq. (1.54) into Eqs. (1.21)–(1.23) gives:

u0 = ū0 +HΓ 0
d

ũ0

u1 = ū1 +HΓ 0
d

ũ1

u2 = ū2 +HΓ 0
d

ũ2

(1.55)

where:

ū0 =
1
2

[
ūt + ūb

]
ũ0 =

1
2

[
ũt + ũb

]
ū1 =

1
2

[
ūt − ūb

]
ũ1 =

1
2

[
ũt − ũb

]
(1.56)

ū2 = w̄
[
D+ ū1

]
ũ2 = w̃

[
D+ ū1 + ũ1

]
+ w̄ũ1

It is noted that the enhanced part of the internal stretch parameter u2, i.e. ũ2, contains
regular variables as well as additional variables.

The magnitude of the displacement jump v at the internal discontinuity Γd,0 is
equal to the magnitude of the additional displacement field at the discontinuity ζd .
Neglecting terms that vary quadratically in the thickness direction, we obtain:

v = ũ0 + ζdũ1 (1.57)

The additional displacement field is described by an additional set of degrees-of-
freedom which are added to the existing nodes of the model. Figure 1.23 shows
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Fig. 1.24 Load-displacement curve and deformations of shell model after buckling and delamina-
tion growth (true scale) [17]

the activation of these additional sets of degrees of freedom for a given (static)
delamination surface in the model. Both the geometrical and the internal nodes
are enhanced when the corresponding element is crossed by the discontinuity.
This implies that each geometrical node now contains three additional degrees-of-
freedom next to the three regular ones, giving six degrees-of-freedom in total. Each
internal node has one extra degree-of-freedom added to the single regular degree-
of-freedom. As in the continuum elements, the discontinuity is assumed to always
stretch through an entire element. This avoids the need for complicated algorithms
to describe the stress state in the vicinity of a delamination front within an element.
As a consequence, the discontinuity ‘touches’ the boundary of an element. The geo-
metrical and internal nodes that support this boundary are not enhanced in order
to assure a zero crack tip condition. The elaboration of the strains, the equilibrium
equations and the linearisation follow standard lines [17].

The example of Fig. 1.20 has been reanalysed with a mesh composed of eight
node enhanced solid-like shell elements [17]. Again, only one element in thickness
direction has been used. In order to capture delamination growth correctly, the mesh
has been refined locally. Figure 1.24 shows the lateral displacement u of the beam as
a function of the external force P. The load-displacement response for a specimen
with a perfect bond (no delamination growth) is given as a reference. The numeri-
cally calculated buckling load is in agreement with the analytical solution. Steady
delamination growth starts around a lateral displacement u ≈ 4 mm, which is in
agreement with the previous simulations, e.g. [2].

1.7 Concluding Remarks

Numerical models with separate finite elements for interfaces and plies are a power-
ful tool to analyse delaminations in composite structures, but have some restrictions.
Because the interface elements have to be inserted a priori, spurious elastic defor-
mations will occur prior to delamination onset. These undesired deformations can
be partially suppressed by assigning a high value to the normal stiffness modulus
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in the elastic range, but this can result in traction oscillations ahead of the crack tip
and in erroneous wave reflections when dynamic delaminations are analysed. Fur-
thermore, this methodology restricts the freedom of the discretisation in the sense
that element boundaries have to be aligned with surfaces of potential delamination.

Exploiting the partition-of-unity property of finite element shape functions
enables placement of (cohesive) interfaces at arbitrary positions at the onset of
delamination. Since interfaces are created at the moment when they are needed, the
necessity of assigning an artificially high stiffness in the elastic regime no longer
exists and traction oscillations or spurious wave reflections are no longer an issue.
The fact that alignment of the discretisation with potential planes of delamination
is no longer necessary, makes possible that unstructured meshes can be used. The
versatility of the method is further enhanced by a consistent extension to large
strains and by the incorporation in a solid-like shell element. It is the latter extension
which enables large-scale computations of composite structures taking into account
delaminations.
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Chapter 2
Material and Failure Models
for Textile Composites

Raimund Rolfes, Gerald Ernst, Matthias Vogler, and Christian Hühne

Abstract The complex three-dimensional structure of textile composites makes
the experimental determination of the material parameters very difficult. Not only
the number of constants increases, but especially through-thickness parameters are
hardly quantifiable. Therefore an information-passing multiscale approach for com-
putation of textile composites is presented as an enhancement of tests, but also
as an alternative to tests. The multiscale approach consists of three scales and
includes unit cells on micro- and mesoscale. With the micromechanical unit cell
stiffnesses and strengths of unidirectional fiber bundle material can be determined.
The mesomechanical unit cell describes the fiber architecture of the textile com-
posite and provides stiffnesses and strengths for computations on macroscale. By
comparison of test data and results of numerical analysis the numerical models are
validated.

To consider the special characteristics of epoxy resin and fiber bundles two
material models are developed. Both materials exhibit load dependent yield behav-
ior, especially under shear considerable plastic deformations occur. This non-linear
hardening is considered via tabulated input, i.e. experimental test data is used
directly without time consuming parameter identification. A quadratic criterion is
used to detect damage initiation based on stresses. Thereafter softening is computed
with a strain energy release rate formulation. To alleviate mesh-dependency this for-
mulation is combined with the voxel-meshing approach.

Epoxy resin is modeled with the first, isotropic elastoplastic material model
regarding a pressure dependency in the yield locus. As the assumption of constant
volume under plastic flow does not hold for epoxy resin, a special plastic potential
is chosen to account for volumetric plastic straining.

To describe the material behavior of the fiber bundles, the second, transversely
isotropic, elastoplastic material model is developed. The constitutive equations
for the description of anisotropy are formulated in the format of isotropic tensor

R. Rolfes, G. Ernst, M. Vogler, and C. Hühne
Institute for Structural Analysis, Leibniz University of Hannover, Appelstraße 9a, 30167 Hannover,
Germany, e-mail: r.rolfes@isd.uni-hannover.de
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functions by means of structural tensors. Opposed to the isotropic case the harden-
ing curves are not obtained by experiment but by simulations performed done with
the micromechanical model. So the hardening and softening curves from the micro
model simulation, reflecting the homogenized material parameters from the micro
model, are submitted to the next scale, the mesomechanical model.

2.1 Introduction

Composite materials have been successfully used since the 1960s for structural
applications, because of their structural advantages of high specific strength and
stiffness.

This first generation of materials are unidirectional composites, mostly based on
prepreg materials. The prepreg composites are characterized by good quality, high
stiffness and strength properties, but suffer from short storage life and high cost of
the uncured material.

Textile composites describe the broad range of polymer composite materials
with textile reinforcements, from woven and non-crimp commodity fabrics to three
dimensional textiles. In a general manner textile composites are based on textile
preforms manufactured by some textile processing technique and on some resin
infiltration and consolidation technique. Examples of textile preforms are shown in
Fig. 2.1. In contrast to prepreg materials the dry preform is infiltrated with a fluent
resin. During the infiltration process the fibers are held in place by the textile struc-
ture of the preform. Whereas in a prepreg-composite fibers are dispersed relatively
homogeneous, a textile composite has a more heterogeneous structure with epoxy
resin pockets and fiber bundles, consisting of fibers and epoxy resin.

Textile composites are characterized by lower manufacturing costs and higher
integrated parts compared to prepreg-composites. They are easy to handle, have a
good to excellent drapability and hence are widely employed in aircraft, boat and
defense industry.

In contrast to composites consisting of UD-lamina the geometry and structure of
textile composites is much more complex. Orthotropic or even general anisotropic
material behavior is observed due to through-thickness reinforcements instead of

Fig. 2.1 Different preforms used in textile composites
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transversely isotropic material behavior of UD-lamina. Fiber undulations reduce the
in-plane mechanical performance depending on the specific textile architecture. The
applicability of analytical methods to determine the stiffness and strength properties
is limited.

Caused by the lack of analytical methods and the complex structure it is com-
mon to model the textile architecture with a representative volume element (RVE)
using the finite element method to determine stiffness and strength properties. Cox
et al. [2] proposed a binary model that describes the roving architecture with truss-
elements. Due to the use of truss elements it is very efficient. This method was
taken up by Haasemann et al. [8] and used for the homogenization of properties for
a Cosserat continuum. There is also a number of approaches [7,14,15,17,22] which
model the structure by volume elements and thus allow for consideration of differ-
ent Poisson’s ratios of fiber and matrix. Lomov et al. [17] developed a program to
model various textile architectures and calculate stiffness of textile composites using
the method of inclusions. Kim and Swan [15] describe a method to model a RVE
for textile composites with an adaptive voxel method. Karkkainen and Sankar [14]
use a RVE of the textile to compute the strengths of woven composites.

As mentioned before, textile lamina are orthotropic or general anisotropic, there-
fore well-known failure criteria for UD-lamina fall short in predicting failure of
textile composites. Only textile composites with minimal fiber undulations and low
3D-reinforcement density can be described by failure criteria developed for UD-
composites, such as e.g. the Tsai-Wu [11] or Puck [11] criterion. For other textile
composites it is necessary to use appropriate failure criteria, that mostly are still to
be developed. Juhasz et al. [13] developed a failure criterion for orthogonal 3D fiber
reinforced plastics e.g. non-crimp fabrics.

Due to the orthotropic material behaviour, also strength parameters in the thick-
ness direction are needed. To determine these parameters by tests, very thick
specimens have to be manufactured which consist of several textile layers. To assure
that the strength parameter of one textile layer is determined, the failure mode of
specimen and single fabric layer has to be identical which can hardly be enforced
through specimen geometry. Therefore, virtual tests are a very good alternative to
experiments and are realized using a multiscale analysis.

To determine the material behavior of textile composites a multiscale analysis
consisting of three levels is presented in Sect. 2.2. To account for the specific behav-
ior of epoxy resin and fiber bundles two material models are given in Sect. 2.3.
The numerical results in Sect. 2.4 focus on the microscale. They are validated by
comparison to experimental data.

2.2 Multiscale Analysis

Mechanical properties of textile composites are influenced by several parameters
and phenomena e.g. fiber architecture, undulations and plastic flow of epoxy resin.
Each of these can influence the structural behavior, but can only be modelled on
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Fig. 2.2 Overview on multiscale-analysis

its specific length scale. For example fiber undulations in a woven lamina can not
be discretized in the model of the whole structure, but on the mesoscale model.
Therefore a multiscale analysis with a homogenization between scales is needed.
In UD-composites the fibers are aligned, so that the homogenized parameters of the
microscale are directly used on macroscale. The fiber architecture of textile compos-
ites is more complex due to undulations and reinforcements that have to be taken
into account on a scale between micro- and macroscale: the mesoscale.

Figure 2.2 gives an overview of the three scales used consecutively, micro-, meso-
and macroscale, between which homogenized material parameters are passed from
the lower to the upper scale. The final objective of this multiscale analysis is to
generate material parameters for the macroscale, on which structures are computed.
The multiscale analysis starts on the microscale, where fiber and matrix are dis-
cretized. Material parameters of epoxy resin and fiber are well known and in case
of nonlinear epoxy behavior, tabulated test data serve as input for the novel material
model described in Sect. 2.3.1. The homogenized stress-strain curves of these unit-
cell computations describe the transversely isotropic material behavior of the fiber
bundles, consisting of fiber and matrix. In the mesomechanical unit cell, that mod-
els the fiber architecture of the textile composite, the fiber bundles are discretized
as homogenized continua. Therefore, the stress-strain curves from the microscale
are used as tabulated input data for the transversely isotropic material described in
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Sect. 2.3.2. Finally the homogenized results of these unit cell computations serve as
material parameters of a lamina on the macroscale, where laminate lay-up and the
geometry of the structure are modelled.

2.2.1 Homogenization

Homogenization is used to simplify a heterogeneous material to an homogeneous
one for reasons of numerical efficiency. It bridges the two length scales of hetero-
geneity of lower scale l and upper scale L. A representative volume element (RVE)
is used to describe a representative part of the material with all relevant components
and a statistical homogeneity, so that the properties of the RVE can be assumed to
be the properties of the material. The statistical homogeneity requires the dimension
of the RVE, a, to meet the criterion

l � a � L (2.1)

In case the material has a regular substructure, the RVE consists only of this sub-
structure. This special case of a RVE is called unit cell. It is usually much smaller
than a RVE because it doesn’t have to fulfill the requirement of statistical homo-
geneity, thus l ≈ a. In this paper the statistical imperfections of the substructures at
the micro- and meso-scale are neglected and unit cells are used.

The boundary conditions applied on the RVE or unit cell have great influence
on the homogenization procedure. For an unit cell with its periodic substructure
periodic boundary conditions give the exact solution, therefore they are chosen for
the unit cells used here.

To determine all homogenized material parameter it is necessary to apply direct
and shear load on the micro- and mesomechanical unit cells. The periodic boundary
conditions for these load cases are shown in Fig. 2.3 for a x-y-z coordinate system.
Depending on the load case, x, y and z are to be replaced by the directions of the
layer, 1, 2 and 3.

Firstly periodic boundary conditions require opposing unit cell boundaries to
remain parallel to each other and to have equal stresses. If load and unit cell are

Fig. 2.3 Periodic boundary
conditions
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symmetric, which is the case for unit cells used here under direct loads, for rea-
sons of symmetry the deformations have to be symmetric as well. Therefore, in
case of direct load it has to be ensured that the boundaries remain plane. For most
boundaries a deformation can be given

u(0,y,z) = 0, u(a,y,z) = δx

v(x,0,z) = 0 (2.2)

w(x,y,0) = 0

whereas other boundaries can deform but have to remain straight and orthogonal,
which can be realized over a linear equation

v(x,b,z) = const. = δy (2.3)

w(x,y,c) = const. = δz

Due to symmetry of unit cell and load it is only necessary to model one quarter
of the micromechanical unit cell. Under shear load opposing boundaries of the unit
cell have to remain parallel to each other:

u(0,y,z) = u(a,y,z)
v(x,0,z) = v(x,b,z) (2.4)

w(x,y,0) = w(x,y,c) = 0

but move in opposing directions:

u(x,0,z) = −u(x,b,z) = −δx

v(0,y,z) = −v(a,y,z) = −δy (2.5)

The forces F shown in Fig. 2.3 are the integrals over the stresses of the boundary
and yield the homogenized stresses when divided by the corresponding bound-
ary area. Deformations δi convert into homogenized unit cell strains and Poisson’s
ratios.

2.2.2 Voxel Mesh

Conventional modelling leads to a number of irregular elements, in particular for a
mesomechanical unit cell of a textile composite, but also for the micromechanical
unit cell. In combination with the strain energy based regularization irregular ele-
ments lead to a mesh-dependent solution, see [5], because the regularization requires
elements with an aspect ratio of unity. To avoid this drawback of irregular elements,
the unit cells shown here are meshed with voxel elements, meaning “volume pixel”.
They have an aspect ratio of one, hence the geometry can only be approximated
because the mesh is regular.
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Another advantage of the approximate meshing is that it simplifies the discretiza-
tion of complicated geometries in the mesomechanical unit cell and the application
of periodic boundary conditions. The geometry of fiber bundles has to be approxi-
mated anyway because it is irregular due to the manufacturing process. In addition
the definition of clear boundaries between fiber bundle and epoxy is problematic
as the fiber bundle itself contains epoxy. Therefore Gunnion [7] has shown that the
voxel method is well suited to determine stiffnesses of textile composites.

2.2.3 Micromechanical Unit Cell

For transversely isotropic UD-material state of the art mixture rules give a good
estimation of the elastic properties, but lack to predict inelastic properties such
as strength and hardening of the fiber bundle. So, the micromechanical unit cell
is needed to determine these parameters when experimental data is not available.
This is often the case for textile composites, because the tests required cannot be
done with the whole preform, but only with a part of it, the fiber bundles. Thus the
specimens have to be produced especially for these tests.

A micrograph of unidirectional composite material is shown in Fig. 2.4a. It can
be modelled with a representative volume element on the microscale that consists
of fiber and matrix. Neglecting the random fiber distribution over the cross sec-
tion, a regular square fiber arrangement, that can be reduced to the unit cell shown
in Fig. 2.4b, is assumed. It has been shown previously [19], that this is a good
approximation.

As mentioned above, the micromechanical unit cell consists only of one fibre,
that can even be reduced to a quarter of a fiber, see Fig. 2.5 when a symmetric load
is applied due to symmetry reasons.

In the examples given here glass fibres and epoxy matrix are used. Both are
isotropic materials, whose material parameters are well known from test and are
summarized in Table 2.1. Strength of the epoxy resin is neglected in fiber direction
and therefore strength in fiber direction Rt,c

‖ can be computed analytically from the

(a) Micrograph [3] (b) Square arrangement

Fiber

Matrix

(c) Unit cell geometry

Fig. 2.4 Micromechanical unit cell
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Fig. 2.5 Discretization of one
quarter of micromechanical
unit cell

Table 2.1 Material properties of fiber and matrix

Parameter Unit E-Glass RIM 135 MY750/HY917/DY063

Young’s modulus GPa 74 3.35 3.35
Strength MPa 2,150/1,450a 69/120/55b 80/120a

Failure strain % 2.950/1.959a 3.4/4.2/22b 5./–a

Shear modulus GPa 30.8 1.24 1.24
Poisson’s ratio 0.2 0.35 0.35

a Tension/compression
b Tension/compression/shear

strength of the fiber Rt,c
fiber and fiber volume fraction vf

Rt,c
‖ = Rt,c

fiber ∗ vf (2.6)

To determine strength parameters in other directions, four load cases summarized in
Fig. 2.6 have to be computed: tension, shear and compression in transverse direction
and in-plane shear.

2.2.4 Mesomechanical Unit Cell

The mesomechanical unit cell is used to model the fiber architecture and to deter-
mine material properties of one lamina on the macroscale. The number of layers
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Fig. 2.6 Load cases for homogenization

homogenized in one lamina depends on the type of preform. In the following
examples for a mesomechanical unit cell of a non-crimp fabric, see Fig. 2.1 and
a weft-knitted fabric, see Fig. 2.9 are given. In the framework of this paper the mod-
els are shown to present a complete multiscale approach, but results of numerical
analysis are focused on microscale simulations.

In general, cracks in a composite firstly evolve in the layers and secondly between
layers. Thus, regarding progressive failure of the structure it is advantageous to
model each layer in one separate lamina on the macroscale, because damage can
be easily attributed and identified for each layer separately. For textile compos-
ites this means to neglect some effects of the fiber architecture, that connects the
layers, on the material behavior. In case of the non-crimp fabric each layer is mod-
elled separately, because through-thickness reinforcement density and influence are
considerably low. Thus the advantage of modelling each layer in separate lamina
prevails over the influence of the reinforcement. However, in case of the weft-knitted
fabric the material inhomogeneity is so big, that it is only possible to identify single
fiber bundles rather than separate layers. Therefore one lamina on the macroscale
has to represent two fabrics at once. On macroscale both examples are treated
as orthotropic textile layers, so nine elastic material constants and nine strengths
have to be determined. Hence, compression, tension and shear are applied in each
direction with periodic boundary conditions corresponding to Fig. 2.3.

Due to periodicity of stitching and knitting patterns an unit cell is used. The fiber
bundles are modelled with transversely isotropic material described in Sect. 2.3.2,
epoxy resin and yarn with isotropic material described in Sect. 2.3.1.

2.2.4.1 Non-Crimp Fabrics

Figure 2.7a shows a scan of a non-crimp fabric that shows the regular stitch pattern
and the area of one unit cell. Of all textile fabrics the structure of the non-crimp
fabric resembles UD-laminates most. Fiber layers can easily be identified and the
disturbance through stitch yarns is comparatively low. Therefore it is logical to
model each layer of the non-crimp fabric separately to identify the material parame-
ters. Only the through-thickness part of the stitch yarn is taken into account, because
it has a significant influence on the behavior of the unit cell. The in-plane part
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Fig. 2.7 Mesomechanical non-crimp fabric unit cell
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Fig. 2.8 Geometry of mesomechanical unit cell for non-crimp fabric

of the stitch yarn has no significant influence, because of its small diameter and
minor material properties of the PES-yarn compared to the glass-fibers that lie in
the same plane. The discretization of the unit cell is shown in Fig. 2.7b, it con-
sists of 200×200× 1 elements. The fiber bundle structure in thickness direction is
neglected, hence only one element is used in this direction. Figure 2.8 shows the dif-
ferent components, fiber bundle, epoxy resin pocket and stitching yarn, of the unit
cell and their dimensions. The resin pocket is LH = 3.5 mm long and bH = 0.3 mm
wide, the radius of the stitch yarn is rN = 0.054 mm.

2.2.4.2 Weft-Knitted Fabrics

Compared to the non-crimp fabric described above the yarn in weft-knitted fabrics
presented here plays a bigger role, although still the yarn diameter is smaller than the
fiber bundle diameter. Firstly the loops of the yarn are denser and secondly the yarn
is stronger, because it consists of glass fibers instead of polyester and has a larger
diameter. Secondly the material structure of the weft-knitted fabric is much more
heterogeneous, the individual fiber bundles are clearly identifiable. Therefore in the
draping process layers of weft-knitted fabric penetrate each other, as can be seen in
Fig. 2.9. Thus the smallest unit cell of the weft-knitted fabric, see Fig. 2.9 includes
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Fig. 2.9 Geometry of mesomechanical unit cell for two weft-knitted fabrics, epoxy resin is
removed on right side

two fabrics. It consists of fiber bundles in warp- and fill-direction, the knitting yarn
and the epoxy resin. The fiber bundles and epoxy resin are discretized with volume
elements, whereas the knitting yarn, is modelled with truss elements, because of
its lower diameter. On the right hand side of Fig. 2.9 the epoxy resin is removed to
make the knitting yarn visible.

2.3 Material Models

In order to describe the specific phenomena of textile composites, special material
models are developed on micro- and mesoscale. The fibers are represented by a
linear elastic material model. For epoxy resin, an isotropic elastic-plastic material
model with an isotropic damage formulation is presented in Sect. 2.3.1. Modelling
the transversely isotropic behavior of the fiber bundles, a transversely isotropic
elastic-plastic material model with damage is developed in Sect. 2.3.2.

2.3.1 Isotropic Elastic-Plastic Material Model for Epoxy Resin

Considering the micromechanical unit cell, epoxy resin turns out as the determining
material concerning the overall mechanical behavior of the unit cell. Especially the
plastic behavior and the fracture characteristic of epoxy resin prove to be the gov-
erning material parameters. Therefore, special care has to be taken to find a good
representation of all experimentally observed characteristics of epoxy resin in the
material model. An isotropic elastic-plastic material model with an isotropic dam-
age formulation is considered as the best approach for modelling epoxy resin in the
micromechanical unit cell.

2.3.1.1 Yield Surface

Generally, epoxy resin is a visco-elastic-plastic material, whereas the development
of viscosity and plasticity varies depending on the type of epoxy resin and the
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stress state. The main focus of the multi-scale analysis is the calculation of material
strengths. Thus, quasi static loading is considered and viscous effects are neglected.
To account for different yielding behavior under uniaxial tension, uniaxial compres-
sion and simple shear (see Fig. 2.11), a plasticity model with a pressure dependent
yield surface is chosen [9]. In terms of the first two stress invariants pressure p and
VON MISES stress σvm, the yield locus can be written as

f = σ2
vm −a0 −a1 p−a2 p2 (2.7)

whereby

p =
1
3

σii and σvm =

√
3
2

si jsi j (2.8)

The term si j is the stress deviator tensor. This formulation of the yield locus allows
to regard three material tests for modelling the epoxy resin. In this presentation,
hardening curves from a uniaxial tensile test and a simple shear test are considered:

σt = σt(ε̄pl) = tensile hardening curve

σs = σs(ε̄pl) = shear hardening curve (2.9)

As a special feature of the material model, the hardening curves are scanned by the
plasticity algorithm and the experimentally obtained test data are reproduced exactly
in numerical simulations, see Sect. 2.3.1.3. As two material tests are regarded, the
parameter a2 in Eq. (2.7) is set to zero and the remaining parameters a0 and a1 are

a0 = 3σ2
s

a1 = 3
σ2

t −3σ2
s

σt
(2.10)

In every time step, the yield stresses σs and σt are readout of the hardening curves
Eq. (2.9) in dependence of the accumulated plastic strain ε̄pl. Hence, the experi-
mentally measured yield stresses for uniaxial tension and pure shear are recovered
exactly in the material model. Although only two hardening curves are considered,
other stress states are properly regarded in the yield locus Eq. (2.7). For negative
hydrostatic pressures p the material behaves stiffer than under positive pressure,
see [6]. Further, in the range of biaxial to triaxial tensile stress states epoxy resin
exhibits a lower strength, i.e. a lower yield and failure stress at these stress states [6].
Both effects are reflected in the yield surface Eq. (2.7). The lower strength at biax-
ial and triaxial stress states is due to the effect of crazing. Crazing goes along with
initiation and evolution of micro pores, which results in a permanent increase in
volume during plastic deformation. The yield surface Eq. (2.7) and the assumption
of a non-associated flow rule with a plastic potential g (see Sect. 2.3.1.2) enables to
control the volumetric plastic straining during plastification.
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2.3.1.2 Flow Rule

Associated flow leads to plastic strain rate in terms of the normal vector to the
yield surface. However, assuming an associated flow rule, the plastic Poisson ratio,
defined as the ratio of transversal to longitudinal plastic strain rate, is not reflected in
a correct way. In some cases there follow even physically nonsensical values for the
plastic Poisson ratio. Further, there is no possibility to control the volumetric plas-
tic straining. The assumption of a VON MISES plastic potential implies plastic flow
under constant volume, which is equal to νpl = 0.5. This is not a correct assumption
for epoxy resin. Experiments show that the plastic Poisson ratio depends on hydro-
static pressure and that there is in particular a different lateral behavior in tension
and in compression, see [6]. Especially in the simulations of the micromechanical
unit cell, the plastic Poisson ratio is of major importance. Assuming an associated
flow rule, the volumetric plastic straining under pressure is overestimated. Although
the hydrostatic pressure is negative, the associated flow rule yields to an increase in
volume. That in turn results in a too stiff material behavior at compressive loading
of the micromechanical model. To account for a realistic assumption for νpl and to
control the lateral plastic straining in dependence on hydrostatic pressure, the plastic
potential is assumed as (see [9]):

g =
√

σ2
vm + α p2 (2.11)

The amount of dilatancy or compression, i.e. the increase or decrease in material
volume due to yielding, can be controlled with the flow parameter α , whereas α
correlates to the plastic poisson ratio νpl under uniaxial loading:

νpl =
9− 2α

18 + 2α
⇒ α =

9
2

1−2νpl

1 + νpl
(2.12)

Plausible flow behavior means 0 ≤ νpl ≤ 0.5 which is equal to 0 ≤ α ≤ 9
2 . If the

flow parameter α is set to zero, there is no change in material volume when yielding
occurs and the VON MISES plastic potential is recovered. So the VON MISES case
is comprised as a special case in Eq. (2.11). The plastic potential is illustrated in
Fig. 2.10.

2.3.1.3 Hardening Formulation

To describe the hardening behavior under plastic flow, a nonlinear isotropic hard-
ening model is used. A special feature is the curve based input of hardening via
tabulated data. That is, the hardening data obtained from uniaxial tensile, uniaxial
compression and simple shear tests can directly be input in terms of load curves
giving the yield stress as a function of the corresponding plastic strain. Conse-
quently, the hardening is dependent on the state of stress and not only on the
accumulated plastic strain. As the measurement results from material testing are
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commonly provided as true stresses over true total strains, the hardening curves
must be prepared by subtracting the elastic part of the strains from the total strains:

εpl
t = εt − σt

E

εpl
s = εs − σs

2G
(2.13)

If the test results are given in engineering stresses and strains, a conversion into true
stresses and true strains has to be done. The concept of tabulated input of hardening
data allows for a straight forward treatment in computation. The test results, that are
reflected in the load curves, are used exactly by the material model without fitting to
any analytical expression. So there is no need of parameter identification. The load
curves expected as input are briefly described in Fig. 2.12.

2.3.1.4 Damage Formulation

To describe the damage and failure behavior of epoxy resin, an isotropic damage
model is implemented in the material model. At first, a damage initiation criterion
is needed, which marks the location in stress space, when damage primarily occurs
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and stiffness degradation starts. Once, the failure surface is achieved at any point in
stress space, i.e. the damage initiation criterion is active, stiffness degradation starts
until the material finally collapses. The material stiffness degradation is controlled
by a scalar damage parameter d. To avoid mesh dependency of numerical results,
the fracture energy concept according to HILLERBORG (1976) is applied.

Failure Surface

In order to regard the material strengths from uniaxial tension, uniaxial compression
and pure shear testings, the failure surface is split into two parts, as illustrated in
Figures 2.13 and 2.10. In the region of positive pressures, the failure surface has a
formulation in analogy to the yield surface:

r = σ2
vm −b0 −b1p (2.14)

If r = 0, the failure criterion is active and stiffness degradation starts until the mate-
rial finally fails. The parameters b0 and b1 are obtained in the same manner as
the parameters a0 and a1 for the yield function Eq. (2.10). Therefore, the material
strengths of uniaxial tension Rt and of shear Rs has to be inserted instead of the
yield stresses in Eq. (2.10). In the region of negative pressures, a linear failure sur-
face, connecting the uniaxial compressive strengths Rc and the shear strength Rs in
the σvm-p-invariant-plane, is assumed (see Fig. 2.10).
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Damage Evolution and Stiffness Degradation

The damage evolution law describes the rate of degradation of the material stiff-
ness once the corresponding initiation criterion has been reached. A scalar damage
variable d is introduced to control the stiffness degradation [16]. At any given time
during the analysis, the stress tensor in the material is given by the scalar damage
equation

σ = (1−d)σeff (2.15)

where d is the overall damage variable and σeff is the effective, i.e. undamaged,
stress tensor computed in the current increment. If the failure surface is achieved at
any stress state, the yield surface is forced to remain constant by setting the hard-
ening modulus to zero and stiffness degradation, controlled by the scalar damage
variable d, starts until the material has lost its load-carrying capacity (d = 1), see
Fig. 2.13. In numerical analysis, then the concerning elements are removed from the
mesh.

Fracture Energy Concept

Softening material behavior, which results macroscopically in a loss of material
stiffness with adjacent failure, is preceded by the initiation and accumulation of
microscopical defects such as cracks, micro-pores, shear-bands or crazes [16]. The
initiation and accumulation of such defects are a matter of local defects and are
restricted to a local zone, whose size depends on the material [16]. Hence, soften-
ing response after damage initiation is governed by a stress-displacement response
and not by a stress-strain response. Continuing to use a stress-strain relation intro-
duces a strong mesh dependency based on strain localization, such that the energy
dissipated decreases as the mesh is refined. HILLERBORG’s fracture energy pro-
posal [10] is used to reduce mesh dependency by creating a stress-displacement
response after damage is initiated. Therefore, HILLERBORG defines the energy Gf,
required to open a unit area of crack, and a characteristic internal length Li,which is
a measurement of the size of the localized area, as material constants. The energy
Gf required to open a unit area of crack, is

Gf =
∫ ε̄pl

ult

ε̄pl
fail

Liσydε̄pl =
∫ ūpl

ult

ūpl
fail

σydūpl (2.16)

The implementation of this stress-displacement concept in a finite element model
requires the definition of a characteristic element edge length Le associated with an
integration point. The fracture energy is then given as

Gf =
∫ ε̄pl

ult

ε̄pl
fail

Leσydε̄pl =
∫ ūpl

ult

ūpl
fail

σydūpl (2.17)
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This expression introduces the definition of the equivalent plastic displacement ūp

as the fracture work conjugate of the yield stress σy after the onset of damage:

ūpl = Leε̄pl (2.18)

The definition of the characteristic length is based on the element geometry. For
solid elements the cube root of the element volume is used. This definition of the
characteristic length is chosen because the direction, in which fracture occurs, is
not known in advance. Therefore, elements with large aspect ratios will have rather
different behavior depending on the direction in which the crack evolves. This may
lead to a mesh sensitivity of the simulation results. To avoid this problem, in the
micro- and meso-models only voxel-elements are used with an aspect ratio of unity.
The introduction of the characteristic element edge length Le yields to a distribu-
tion of localized strains over the particular element width and enforces the fracture
energy to be constant.

2.3.1.5 Numerical Treatment

The present model has been implemented as a user-defined material into ABAQUS
implicit (user interface UMAT) and ABAQUS explicit (user interface VUMAT).
Starting from the additive decomposition of the strain increment at time tn+1

∆εn+1 =εn+1−εn (2.19)

the trial stress, assuming elastic behavior, is computed as

σ trial
n+1 = σn +C

el :∆εn+1 (2.20)

Checking the yield surface
f = f (σ trial

n+1, ε̄
pl) (2.21)

indicates elastic ( f ≤ 0) or plastic ( f > 0) loading. In the case of plastic loading, a
classical elastic-predictor plastic-corrector scheme is applied for stress integration,
see [21] or [12]. The plastic strain increment can be written as

∆ε̄pl
n+1 = ε̄pl

n+1 − ε̄pl
n = ∆λn+1mn+1 (2.22)

where ∆λ is the sought plastic multiplier. The direction m of the plastic flow in the
case of a non-associated flow rule is given by the derivation of the plastic potential
g with respect to the stresses:

mn+1 =∂g(σn+1)/∂σn+1 (2.23)

The increment of the equivalent plastic strain is obtained from

∆ε̄pl
n+1 =∆λn+1 ‖mn+1‖ (2.24)
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Hence, the stresses can be calculated through

σn+1 =σ trial
n+1−∆λn+1C

el :mn+1 (2.25)

and the internal variable is updated by

ε̄pl
n+1 = ε̄pl

n +∆λn+1 ‖mn+1‖ (2.26)

Inserting in the active yield surface Eq. (2.21) leads formally to a nonlinear equation
in ∆λn+1 which is solved by the Newton-Raphson method. Figure 2.14 shows an
illustration of the applied integration algorithm.

2.3.2 Transversely Isotropic Elastic-Plastic Material Model
for Fiber Bundles

Fiber bundles, as used in the mesomechanical unit cell, exhibit a transversely
isotropic characteristic. Although plasticity is lower and the overall behavior is more
brittle than pure resin, plasticity also occurs. Especially under transverse and in-
plane shear stress states considerable plastic deformations can be observed, whereas
under tensile and compressive loadings in fiber direction the fiber bundle exhibits an
elastic-brittle behavior. That is, the material behavior can be approximated as nearly
linear elastic until failure occurs and plasticity in fiber direction is neglected. Fur-
ther, yielding behavior and material failure are dependent on hydrostatic pressure.
Therefore, a transversely isotropic elastic-plastic material model with a pressure
dependent C1-continuous yield surface and a transversely isotropic damage formu-
lation is developed. For the infinitesimal strain tensor, an additive decomposition is
assumed:

ε = εel + εpl (2.27)

For both the elastic and the plastic part of the transversally isotropic material
model, the representation of the constitutive equations is carried out in the format
of isotropic tensor functions by means of structural tensors. The structural tensor A,
reflecting the materials intrinsic characteristic, is defined as the dyadic product of
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the preferred direction a:
A = a⊗a (2.28)

Transversal isotropy means, that the material response is invariant with respect to
arbitrary rotations around this preferred direction a, to reflections at fiber parallel
planes and to the reflection at that plane, whose normal is a. These are the group of
symmetry transformations for transverse isotropy. For further description of invari-
ant theory see [1]. In the sequel, constitutive equations for the elastic and the plastic
part of the material model are derived.

2.3.2.1 Elastic Stress-Strain Relations

As only small elastic deformations are considered, the assumption of HOOKE’s
linear elasticity law σ = σ̂(εel) is justified. Postulating hyperelasticity, the first
derivative of the free energy function Ψ̂ with respect to the strains εel delivers
the stresses σ and the second derivation with respect to the strains εel gives the
elasticity tensor Cel. In case of transverse isotropy, the free energy function is
formulated in isotropic invariants of the strain tensor εel and the structural ten-
sor A. To derive a representation of Ψ̂ and the infinitesimal stress tensor σ as
isotropic tensor-functions, the functional basis of the two symmetric second order
tensorial arguments σ and A is needed. Assuming the stresses to be a linear func-
tion of the strains and providing a stress free undistorted initial configuration, i.e.
σ(ε = 0) = 0, terms are neglected, which are linear or cubic in the strains. This
enforces the elasticity tensor Cel to be constant and yields to a formulation of the
free energy function with five elasticity constants λ , α , µL, µT and β , describing
the transversely isotropic material behavior:

Ψ̂(εel,A) :=
1
2

λ ( trεel)2 + µT tr(εel)2 + α(aTεela) trεel

+2(µL − µT )(aT(εel)2a)+
1
2

β (aTεela)2
(2.29)

For the stresses we obtain

σ = λ ( trεel)1+ 2µT εel + α(aTεela1+ trεel A)
+2(µL − µT )(Aεel + εelA)+ β aTεelaA

(2.30)

and the elasticity tensor is

Cel = λ1⊗1+ 2µTI+ α(A⊗1+1⊗A)
+2(µL − µT )IA + βA⊗A

(2.31)

Hereby, the fourth order tensor IA in index notation reads AimI jmkl + A jmImikl .
In matrix notation, the fourth order elasticity tensor of transversal isotropy for a
preferred X1-direction in a Cartesian coordinate system, i.e. a = [1,0,0]T , reads:
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Table 2.2 Elasticity constants for transversely isotropic elasticity

Symmetry of the elasticity tensor:
ν12

E22
=

ν21

E11
;

ν13

E33
=

ν31

E11
;

ν23

E33
=

ν32

E22

Constants of invariant formulation:
λ = E22(ν23 +ν31ν13)/D
α = E22[ν31(1+ν32 −ν13)−ν32]/D
β = E11(1−ν32ν23)/D−E22[ν23 +ν13ν31]/D−4µ12

µl = µ12

µt = µ23

D = 1−ν2
32 −2ν13ν31 −2ν32ν31ν13

Engineering constants:
E22 = E33, ν23 = ν32, ν12 = ν13, ν21 = ν31, µ12 = µ13

E11 = −(λ µt −4λ µl −λ β −2αµt +2µ2
t −β µt −2αµt −4µl µt +α2)/(λ + µt)

E22 = −4µt(λ µt −4µlλ −β λ +2µ2
t −β µt −2αµt −4µt µl +α2)/Dt

ν12 = 2µt(λ +α)/Dt

ν21 = (λ +α)/(2λ +2µt)
ν23 = −(α2 +2λ µt −β λ −4µlλ )/Dt

µ12 = µl

µ23 = µt

Dt = 4µlλ +β λ −4µ2
t +4µtα +2β µt +8µlµt −α2

C
el =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2α + β + 4µL−2µT λ + α λ + α 0 0 0
λ + α λ + 2µT λ 0 0 0
λ + α λ λ + 2µT 0 0 0

0 0 0 µL 0 0
0 0 0 0 µL 0
0 0 0 0 0 µT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.32)

The transformation from engineering constants to those of the invariant repre-
sentation an vice versa are listed in Table 2.2.

2.3.2.2 Transversely Isotropic Yield Surface

Our proposal of a transversely isotropic yield surface is an extension of a yield
function following [1] and [18] and its numerical treatment in [20] and [4]. Four
invariants I1, I2, I3 and I4 are introduced for the construction of the yield sur-
face. The first two invariants I1 and I2 are chosen according to [20]. Therefore, a
decomposition of the stress tensor into an extra stress tensor σ pind, inducing plastic
yielding, and a remaining reaction stress tensor σ reac is assumed:

σ = σ pind + σ reac (2.33)
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where the stress components σ reac and σ pind are:

σ reac =
1
2
( trσ −aT σa)︸ ︷︷ ︸

p

1−1
2
( trσ −3aT σa)︸ ︷︷ ︸

Ta

A

σ pind = σ − 1
2
( trσ −aT σa)1+

1
2
( trσ −3aT σa)A

(2.34)

The term Ta can be interpreted as a fiber overstress, exceeding the hydrostatical
part of the stress tensor and p represents the hydrostatical pressure. In order to
account for plastification in fiber direction, the projection of the deviatoric part of
the reaction stress tensor σ reac onto a can be regarded:

aT ( devσ reac)a = aT Ta( devA)a = Ta aT (A− 1
3
1)a =

2
3

Ta (2.35)

The yield condition can be composed of the basic invariants of the related stresses
and the structural tensor. The invariants I1 and I2 are formulated with σ pind, see [1],
[18] and [20]:

I1 :=
1
2

tr (σ pind)2 −aT (σ pind)2 a

I2 := aT (σ pind)2 a
I3 := trσ −aT σa
I4 := 3

2 aT σ deva = Ta

(2.36)

The invariant I3 represents the hydrostatical pressure and thus accounts for a pres-
sure dependency of the yield locus. The invariant I4 is chosen to regard plastification
in fiber direction. The yield function as a function of the introduced invariants is
formulated as

f = α1 I1 + α2 I2 + α3I3 + α32I2
3 + α4 I2

4 −1 (2.37)

with the flow parameters α1, α2, α3, α32 and α4. The first and second derivative of
the yield locus Eq. (2.37) are:

∂σ f = ∂Ii f ∂σ Ii f

= α1 σ pind +(α2 −α1)(Aσ pind + σ pindA)+ α3(1−A)
+2α32I3(1−A)α4 (3 I4A

dev) =: A : σ +B

∂ 2
σσ f = α1 Ppind +(α2 −α1)P

pind

A + 2α32(1−A)⊗ (1−A)

+α3(1−A)
9
2

α4 Adev ⊗Adev =: A

(2.38)

with the projection tensor

P
pind := ∂σ σ pind = I− 1

2
(1⊗1)+

1
2
(A⊗ 1+1⊗A)− 3

2
(A⊗A) (2.39)

and (Ppind

A )i jkl := AimP
pind

m jkl + Am jP
pind

imkl .
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Adev is the deviator of the structural tensor A, A is the constant bending tensor
and B is the first derivative of the linear terms in σ of the quadratic yield locus. This
enables us to state the yield function Eq. (2.37) in the more general form:

f =
1
2

σ : A : σ +B : σ −1 (2.40)

2.3.2.3 Parameter Identification

To determine the five material parameters α1, α2, α3, α32 and α4 of the yield func-
tion, material simulations of the micromechanical unit cell are used. As already
explained, in fiber direction yielding is not assumed, because the strength in the pre-
ferred direction is determined by the strength of the fibers. So the parameter α4 is set
to zero and there remain four parameters to be determined by means of four virtual
material tests done with the micro model. The material tests and there representation
in stress space are:

1. Simple shear in the plane perpendicular to the fiber (transverse shear)

σ = devσ = σ pind =

⎡⎢⎣ 0 y⊥⊥ 0
y⊥⊥ 0 0

0 0 0

⎤⎥⎦ , a =

⎡⎢⎣ 0
0
1

⎤⎥⎦
I1 = (y⊥⊥)2, I2 = 0, I3 = 0, I4 = 0

� f = α1 (y⊥⊥)2 −1 = 0

α1 := 1/(y⊥⊥)2 (2.41)

2. Simple shear in the fiber plane (in-plane shear)

σ = devσ = σ pind =

⎡⎢⎣ 0 y⊥‖ 0
y⊥‖ 0 0
0 0 0

⎤⎥⎦ , a =

⎡⎢⎣ 1
0
0

⎤⎥⎦
I1 = 0, I2 = (y⊥‖)2, I3 = 0, I4 = 0

� f = α2 (y⊥‖)2 −1 = 0

α2 := 1/(y⊥‖)2 (2.42)

3. Uniaxial tension and uniaxial compression perpendicular to the fiber

σ =

⎡⎢⎣ 0 0 0
0 0 0
0 0 y⊥

⎤⎥⎦ , a =

⎡⎢⎣ 1
0
0

⎤⎥⎦
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I1 =
(y⊥)2

4
, I2 = 0, I3 = y⊥, I4 = 0

� f = α1
(y⊥)2

4
+ α3 y⊥ + α32 (y⊥)2 −1 = 0 (2.43)

Inserting yt
⊥ firstly and yc

⊥ secondly into Eq. (2.43) leads to a system of equations
which yields the parameters

α32 :=

1
yt
⊥
− 1

yc
⊥
− α1

4
(yt

⊥− yc
⊥)

yt
⊥− yc

⊥
(2.44)

α3 :=
1

yt
⊥
− α1

4
yt
⊥−α32 yt

⊥ (2.45)

In contrast to transverse and in-plane shear tests, where pronounced plasticity can
be observed until failure occurs (see Fig. 2.19), the stress-strain curves from uniax-
ial loadings of the micro-mechanical model are nearly elastic-brittle, that is, damage
in this case is initiated without significant plastic deformation. Consequently, plas-
ticity can be neglected in the case of uniaxial loading. However, to handle the
stiffness degradation in the material model, the uniaxial stress-strain curves are
first considered as linear-elastic ideal-plastic as the material strengths from uniax-
ial micro-simulations are considered as the “yield” stresses yt

⊥ and yc
⊥ in uniaxial

tension and compression. The stiffness degradation starts immediately, when the
“yield” stress in tension or compression, i.e. the particular strength in tension and in
compression, is reached. The ideal plastic stresses are the undamaged stresses σeff

and σ is the reduced stress tensor, see Sect. 2.3.1.4. Modelling the plastic behavior
of the transverse and in-plane shear tests, the same approach is followed as already
demonstrated for the isotropic epoxy resin model. The hardening curve are input
via tabulated data giving the yield stress as a function of the corresponding plas-
tic strains. The simulation results from the micro model, that are reflected in the
hardening curves, will be used exactly by the material model without any parameter
fitting. In analogy for the σvm-p-invariant-plane for the isotropic yield locus, the
transversely isotropic yield locus can be illustrated in an invariant plane respecting
the first and third invariant I1 and I3. For convenience and for a better comparability
with the invariant plane for the isotropic model, the abscissa is the third invariant
I3 and the ordinate is the square root of the first invariant I1, see Fig. 2.15. To clar-
ify this representation, the stress states for uniaxial, biaxial and pure shear loadings
are indicated in Fig. 2.15. Triaxial stress states are not represented in this invariant
plane, because stresses in fiber direction are assumed to not induce yielding and so
the projections of the stress tensor onto the preferred direction are not reflected in
the invariants I1 and I3. As illustrated in Fig. 2.15, the ordinate corresponds to a pure
transversal shear stress state, the abscissa represents biaxial stress states and the two
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uniaxial
compression

biaxial
compression

uniaxial
tension

biaxial
tension

Fig. 2.15 Yield and failure surface of the transversely isotropic material model in
√

I1-I3-invariant-
plane

graphs with a slope of 0.5 and −0.5 mark uniaxial tension and compression loading
states. The stress states and their representation in the I3-

√
I1-plane are:

• Transverse shear loading:

I1 = y2
⊥⊥, I3 = 0

• Uniaxial loading:

I1 =
(y⊥)2

4
, I3 = y⊥

• Biaxial loading:
I1 = 0, I3 = 2ybiax

2.3.3 Transversely Isotropic Damage Formulation

In order to model damage and failure of the fiber bundle, two damage initiation
criterions are introduced. The first one, the fiber failure criterion, only accounts for
the stress resistance in fiber direction, whereas the second one, the inter-fiber failure
criterion, regards stress states caused by shear stresses and loadings perpendicular
to the fiber direction. Stiffness degradation and element failure occur in a similar
way as already described in the isotropic material model, see Sect. 2.3.1.4. How-
ever, if the inter-fiber failure criterion is active, the stresses in fiber direction are not
effected, whereas, if the fiber failure criterion is achieved, the material collapses and
the affected elements are removed from the mesh.
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2.3.3.1 Fiber Failure Criterion

It is assumed, that the strength in fiber direction is mainly governed by the strength
of the fibers. Thus, in the material model a fiber tensile strength Rt

‖ and a com-
pressive strength Rc

‖, representing the resistance of the fiber bundle under uniaxial
tension and compression in fiber direction, are needed as input data. Theses ultimate
stresses are obtained from experiment [11]. If one of these strengths is achieved, the
material fails and there is no remaining load carrying capacity. The failure criterion
for fiber failure is:

aTσa
R‖

= 1 (2.46)

The term aTσa is the projection of the stress tensor onto the preferred direction and
R‖ is the resistance of the fiber bundle in fiber direction in tension (R‖ = Rt

‖) and in
compression (R‖ = Rc

‖) respectively.

2.3.3.2 Inter-Fiber Failure Criterion

To consider stress states out of the fiber direction, a further damage criterion is
introduced. This inter-fiber failure criterion is formulated in the format of the yield
locus in the

√
I1-I3-invariant-plane, as illustrated in Fig. 2.15. The failure surface is:

r = β1 I1 + β2 I2 + β3I3 + β32I2
3 + β4 I2

4 −1 (2.47)

The failure criterion is active, when r = 0. The parameters β1, β3 and β32 are
obtained in the same manner as the parameters α1, α3 and α32 for the yield function
Eq. (2.37). Therefore, the material strengths of uniaxial tension Rt

⊥ and compres-
sion Rc

⊥ perpendicular to the fiber and the material strength of transverse shear R⊥⊥
and in-plane shear R‖⊥ has to be inserted instead of the yield stresses in Eq. (2.37).
The required strengths Rt

⊥, Rc
⊥, R⊥⊥ and R‖⊥ are obtained from simulations with

the micromechanical unit cell. If the inter-fiber failure criterion is reached, stiffness
degradation is initiated and controlled by a scalar damage variable d, es already
described in Sect. 2.3.1.4 for the isotropic model. The damage variable d does not
effect the stresses in fiber direction.

2.4 Results of Micromechanical Unit Cell Computations

The convergence of the presented material in combination with the voxel mesh is
very good as seen in Fig. 2.16. It shows stress-strain curves from computations on
the micromechanical unit cell under compression and shear with different mesh
refinements (40×40, 80×80 and 160×160 elements).
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Fig. 2.16 Stress-strain curves of micromechanical unit cell computations with different element
number

-160

-140

-120

-100

-80

-60

-40

-20

0
-1.4-1.2-1-0.8-0.6-0.4-0.20

St
re

ss
 in

 M
Pa

Strain in %

Transverse compression
original parameters
fitted parameters
WWFE

(a) Transverse compression

0

20

40

60

80

100

0 1 2 3 4 5 6

Tr
ac

tio
n 

in
 M

Pa

Strain in %

In-plane shear
original parameters
fitted parameters
WWFE

(b) In-plane shear

Fig. 2.17 Stress-strain curves of micromechanical unit cell computations compared with test
results from WWFE

2.4.1 Comparison with Test Results from WWFE

To validate the presented model, test results on unidirectional lamina from the
World-Wide Failure Exercise [11] were compared with results from the microme-
chanical unit cell. Test results are given for transverse compression and in-plane
shear of unidirectional lamina comprised of E-Glass fibers and epoxy resin MY750/
HY917/DY063 with a volume fraction vf = 60%. The material parameters given in
the WWFE are summarized in Table 2.1. Unfortunately these are not all parame-
ters needed for the material model used here Therefore the plastic hardening curves
of epoxy resin RIM135 given in Fig. 2.11 are used for this resin as well as shear
strength and failure strains. Table 2.1 shows that these two resin systems are very
similar. In the WWFE a strain energy release rate GIc = 0.165 N

mm is given for the
lamina and taken for the resin here.

Stress-strain curves of the micromechanical unit cell computations are shown
in Fig. 2.17 compared to test results from the WWFE. First of all, both curves do
describe the main characteristics of the experimental results very well due to the
material formulation. In principle the strength of the unit cell is dependent on the
strength of the epoxy matrix, which is the weaker of the two constituents. Therefore
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an apparently implausible result of the computation is that the strength under com-
pression is higher than the one given for the epoxy resin in Table 2.1, which but is
the strength under uniaxial compression. However, in the micromechanical unit cell
a three-dimensional stress state occurs. It is caused by different Young’s modulus
and Poisson’s ratio of fiber and matrix and the fact that the unit cell is built of vol-
ume elements and under plain strain conditions. In Sect. 2.3.1 it can be seen, that
the stress triaxiality has a considerable influence on the strength. Multiaxial stresses
under compression increase the strength, under tension the strength decreases. This
is the reason why under compression the strength of the unit cell is higher than that
of epoxy under uniaxial compression and why under tension the strength of the unit
cell is very small.

Thus, under compression the results are in good agreement with the test curves,
although the nonlinearity is not modelled very well. It is captured better when
lowering the strength to 100 MPa and increasing the strain energy release rate to
GIc = 0.330 N/mm, see Fig. 2.17a. Under shear the test results are much stiffer,
about 25%, than the unit cell computations. However, Hinton states in the WWFE
that the experimental determination of shear and compression properties is particu-
larly difficult and material data given might be inaccurate. Therefore, by increasing
shear modulus and hardening curve by 25% test results and computation agree very
well, see Fig. 2.17b.

Figure 2.18 shows the evolution of the crack path through the 40×40 elements
unit cell. Under in-plane shear a damage is initiated on the interface between fiber
and matrix and then localizes in a straight crack band through the unit cell. Under
compression the crack is not initiated on the interface but in the upper left cor-
ner were the highest strains are in the matrix, but the crack then evolves along the
interface, where large shear deformations occur.

The in-plane shear strength calculated here is a little lower than the shear strength
of the epoxy 51.74 < 55.0 MPa. This result is reasonable because the crack runs
through the epoxy matrix, see Fig. 2.18b and therefore the unit cell strength cannot
exceed the epoxy strength. Actually it is a little smaller due to the inhomogeneous
stress distribution.

(a) Transverse compression (b) In-plane shear

Fig. 2.18 Damage evolution in micromechanical unit cell
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2.4.2 Results of Micromechanical Unit Cell for Homogenization

For a complete set of parameters for the transversely isotropic fiber bundle mate-
rial four virtual tests are needed. The homogenized stress-strain curves given in
Fig. 2.19 were determined for fiber bundles comprising of e-glass fibers and epoxy
resin RIM 135 with a volume fraction vf = 50%. Material parameters are given in
Table 2.1, the plastic hardening curves are shown in Fig. 2.11 and the strain energy
release rate GIc = 0.165 N/mm is taken from the similar material of the WWFE.
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Fig. 2.19 Stress-strain curves of micromechanical unit cell computations for use in mesomechan-
ical unit cells

Table 2.3 Mechanical properties WWFE (E-Glass/MY750/HY917/DY063-epoxy) and E-Glass/
RIM135 lamina

Properties Unit Test results Micro. unit cell
WWFE WWFE E-Glass/

RIM 135

Longitudinal modulusa E‖ GPa 45.6 45.7 38.7
Longitudinal tensile strength Rt

‖ MPa 1280 1308 1075

Longitudinal tensile failure strain ε t
‖ % 2.807 2.807 2.807

Transverse modulusa E⊥ GPa 16.2 15.06 11.07
Transverse compressive strength Rc

⊥ MPa 145 149.5 128.5
Transverse compressive failure strain εc

⊥ % 1.2 1.05 1.21
Transverse tensile strength Rt

⊥ MPa 45 38.3 40.3
Transverse tensile failure strain εc

⊥ % 0.25 0.3 0.4
In-plane Shear Modulusa G‖⊥ GPa 5.83 4.66 3.51
In-plane Poisson’s ratio υ‖⊥ 0.278 0.256 0.264
In-plane Shear strength R‖⊥ MPa 73 51.7 51.2
In-plane Shear failure strain υ‖⊥u % 4 3.42 4.64
Transverse Shear modulusa G⊥⊥ GPa – 3.3 2.63
Transverse Poisson’s ratio υ⊥⊥ 0.4 0.262 0.32
Transverse Shear strength R⊥⊥ MPa – 51.04 51.4
Transverse Shear failure strain υ⊥⊥u % – 3.17 4.08

a Initial modulus
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Table 2.3 sums up homogenized material parameters of these computations and
compared to test results of the WWFE and micromechanical unit cell computations
given in Sect. 2.4.1.

2.5 Conclusion

A multiscale analysis for the determination of stiffnesses and strengths of textile
composites has been presented. It consists of unit cells on micro- and mesoscale
to describe the behavior of unidirectional fiber bundle material and the textile fab-
ric architecture, respectively. Novel material formulations for isotropic epoxy resin
and transversely isotropic fiber bundle material have been developed that allow for
load dependent plastic hardening. The hardening curves are input as tabulated data
directly from tests or computations. Results of micromechanical unit cell compu-
tations have been compared to experimental results of the WWFE and show the
capabilities of the presented material model and multiscale analysis.
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Chapter 3
Practical Challenges in Formulating Virtual
Tests for Structural Composites

Brian N. Cox, S. Mark Spearing, and Daniel R. Mumm

Abstract Taking advantage of major recent advances in computational methods and
the conceptual representation of failure mechanisms, the modeling community is
building increasingly realistic models of damage evolution in structural composites.
The goal of virtual tests appears to be reachable, in which most (but not all) real
experimental tests can be replaced by high fidelity computer simulations. The payoff
in reduced cycle time and costs for designing and certifying composite structures is
very attractive; and the possibility also arises of considering material configurations
that are too complex to certify by purely empirical methods. However, major chal-
lenges remain, the foremost being the formal linking of the many disciplines that
must be involved in creating a functioning virtual test. Far more than being merely
a computational simulation, a virtual test must be a system of hierarchical models,
engineering tests, and specialized laboratory experiments, organized to address the
assurance of fidelity by applications of information science, model-based statisti-
cal analysis, and decision theory. The virtual test must be structured so that it can
function usefully at current levels of knowledge, while continually evolving as new
theories and experimental methods enable more refined depictions of damage.

To achieve the first generation of a virtual test system, we must pay special atten-
tion to unresolved questions relating to the linking of theory and experiment: how
can we assure that damage models address all important mechanisms, how can we
calibrate the material properties embedded in the models, and what constitutes suf-
ficient validation of model predictions? The virtual test definition must include real
tests that are designed in such a way as to be rich in the information needed to
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inform models; and model-based analyses of the tests are required to mine the infor-
mation. To date these compelling issues have been greatly underserved by both the
modeling and experimental communities. Model-based analysis of tests has been
undertaken only in terms of very simple (linear or continuum) engineering con-
cepts; information-rich tests for more complex damage mechanisms have not been
defined; and in fact the information in which experiments need to be rich has not
been stated. Specific challenges in designing experiments for informing virtual tests
and some promising experimental methods are summarized here.

3.1 Introduction – The Concept of a Virtual Test

The process of qualifying and certifying composite materials and structures for
strength, fatigue life, fracture resistance, and damage tolerance remains almost
entirely empirical. Coupon tests are conducted for all material types (layups), under
all stress states that are anticipated in the structure, and covering monotonic load-
ing, fatigue, impact, and long-duration environmental exposure. Coupon tests are
followed by tests of large substructures and structures subjected to service con-
ditions. In the case of airframes, the cost of testing to prove safety is immense:
a typical large airframe, for example, currently requires ∼104 tests of compo-
nents and structures up to entire tails, wing boxes, and fuselages, to achieve safety
certification [27].

While laminar stress analysis is an excellent tool for predicting the distribution
of loads throughout a composite structure when its behavior is linear-elastic, once
damage begins prediction is much more difficult. Damage in composites involves
extremely complicated nonlinear processes acting from the atomic scale (molecu-
lar bond rupture, fiber-matrix debonding), through the microscale (microcracking,
crazing, kink band formation), and on up to the scale of the structure itself (large
delamination cracks and other cracks and buckling modes). Nevertheless, advances
in modeling concepts and computational methods, including the refinement of
cohesive models of fracture and the formulation of mixed stress-strain and traction-
displacement models that combine continuum (spatially averaged) and discrete
damage representations in a single calculation, have led to damage simulations of
increasing realism. Emerging hierarchical formulations add the potential of trac-
ing the damage mechanisms down through all scales to the atomic. As the fidelity
of modeling increases, the possibility is approached of using simulations as virtual
tests, replacing perhaps the majority of the real tests currently needed for design and
system certification.

To serve as a virtual test, a simulation need not necessarily re-create every last
detail of damage, right down to molecular processes, but it must be a satisfactory
replication of a real test in certain engineering aspects. Just which real test results
must be replicated will depend on the application. The minimum requirements will
commonly include (1) correct predictions of the nonlinear relation between load and
far-field displacement (the compliance of the part); (2) the ultimate strength of the
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part if the magnitude of the load in a particular loading configuration continues to
rise; (3) its strength if the loading configuration is switched to a different load type
after damage has already occurred in the first configuration; and (4) changes in part
strength under cyclic loading or environmental exposure. The last two requirements
are usually the most demanding of fidelity, because they depend on accurate predic-
tion of the type and spatial distribution of damage, resolved down to some material
gauge length. The question of how small that gauge length must be is one of the
most critical in defining a valid virtual test.

This definition of a virtual test drives the formulation to a top-down, rather than
bottom-up model. A top-down model begins with a macroscopic engineering model,
which is progressively augmented by incorporating just those successive levels of
detail that are necessary to account for features of engineering tests. Since the model
is always calibrated against engineering tests, predictions are available to design-
ers at any stage of model augmentation, subject to some current set of restrictions.
The process of continually validating predictions against tests rapidly distinguishes
those mechanisms, or those parameters incorporated in models of mechanisms, that
have an important effect on engineering performance from those that are irrelevant.
A bottom-up model, in contrast, seeks to simulate failure by building up detailed
models of atomic and molecular processes using quantum mechanics and classi-
cal molecular dynamics [1, 2, 6, 8, 9, 30, 32, 41]. The difficulty with the bottom-up
method in the context of virtual tests is that the intervals of time and the size of the
material that can be modeled remain many orders of magnitude below the duration
of a test and the size of a structural test coupon, let alone a structure; therefore,
the mechanisms that may be revealed by the model during a simulation (rather than
written into the model explicitly) cannot be guaranteed to be exhaustive of those
that arise in large-scale or long-duration experiments. While a top-down model
may well reach down to include an atomic scale model in representing a particular
mechanism, attempts to build complete simulations from the bottom up continue
to fall well short of satisfying the requirements of virtual tests of engineering
materials.

The utility of a virtual test will be as an accurate interpolator between relatively
sparse engineering data accumulated by conventional, real tests. The interpolation
could, for example, span deviations from the real test matrix in ply layup, stress
state, or the shape of stress concentrators such as cutouts. There are also large ben-
efits associated with reducing the need for long duration testing or tests of coupled
environmental and mechanical effects, whose strong interactions necessitate com-
plicated and expensive test matrices for accurate failure mapping. A realistic goal
might be to substitute for 90% of the test matrix currently required for component
design and certification, using the remaining 10% of the real test matrix to anchor
the virtual tests and establish their validity.

In this vision of a virtual test, the link between model and experiment is central;
it defines the virtual test. Experimental limitations on our ability to witness damage
mechanisms and quantify the material behavior that controls them impose a rigid
bound upon what is achievable in a virtual test.
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3.2 The Structure of a Virtual Test – Formalizing
the Link Between Experiment and Theory

Figure 3.1 introduces a schematic of the structure and components of a virtual test
in the vision presented in this paper. (The reader is also referred to an excellent
paper by Ashby on how to construct a model for more general materials problems
than considered here [3].) The central column shows a typical choice of the hier-
archical separation of modeling scales in a multi-scale simulation. The formalism
of multi-scale methods binds the hierarchy together. The separation into scales, the
phenomena modeled, and the idealizations used at each scale are chosen in response
to the physics discovered by many types of experiments that are usually complicated
and conducted in specialized laboratories (right hand column). The left column
shows classes of engineering tests used in the field, with links to the level of detail
required in the top-down modeling strategy for their simulation. The engineering
tests provide data against which the choice of model formulations can be assessed
and validated via sensitivity tests. The engineering tests also provide the primary
data from which model calibration can be carried out via inverse problem methods.
The specialized laboratory experiments (right column) may have a supplementary
role in model calibration, provided standards of easy repeatability can be satisfied.
The arrows in the schematic show some of the obvious links between engineering
tests, specialized experiments, and theory; others can also be imagined.

The initial process of choosing a model that is an apt representation of an
observed mechanism is qualitative and subjective. The modeler will refer to the
accumulated wisdom of the literature, examine the best evidence available from
experimental sources, and choose a theoretical formulation of the features of obser-
vations that are perceived to be most important and satisfy personal biases. In a
top-down strategy, the modeler will also choose which mechanisms and model-
ing idealizations should be allocated to different levels in the model hierarchy.
For example, the highest level (simplest) representation of a composite laminate
may include only calculations of stress and strain in the elastic regime; the next
level of detail might include continuum damage representations of nonlinearity; the
next level might include principal crack systems (delaminations, splitting cracks,
etc.), the next level a discrete representation of microcracks, the next level failure
processes on the scale of individual fibers, etc. (Fig. 3.1). Or some other parti-
tioning of the hierarchy might be preferred. There is no unique outcome of this
decision-making process.

However, once the initial choices have been made, a formal strategy of refining
and testing the fidelity of the model must be found. One method of posing this
problem is to study influence functions [31,44] that quantify the degree to which an
engineering observable (ultimate strength, crack size at some point in the loading
history, etc.) depends on the choice of the most detailed hierarchical level that is
included, which particular mechanisms are included, the functional form of a model
that represents a particular mechanism, or the values of parameters in models of
mechanisms. One should expect to discover that certain engineering properties can
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be successfully predicted with a high level (simple) simulation, while others require
that increasing levels of detail be included. For each level of complexity chosen
for the simulation, some mechanisms will prove irrelevant to certain engineering
properties and critical to others. Curiously, this exercise of systematically relating
model complexity and mechanisms to the fidelity of engineering predictions seems
never to have been undertaken in the context of composite damage simulations; yet
it is an essential step towards a verified virtual test.

The study of influence functions should not be conducted as a theoretical exercise
exclusively within the community of modelers (a regrettably common paradigm!).
Experimental confirmation of an identified strong influence should always be sought,
e.g., by varying the ply lay-up or resin in such a way that the simulations pre-
dict a significant change in the value or variance of an observable. The ability of
a simulation to match the values of different engineering observables simultane-
ously (e.g., monotonic strength and fatigue lifetime) and to predict the variance
in observables should be tested. The internal elements of the simulation, whether
models of mechanisms or parameters within models of mechanisms, that have the
greatest impact on predicted properties and their variance need to be identified.

A formal approach should also be followed for seeking the optimal values of
model parameters via experimental calibration. Simple curve fitting (e.g., minimiz-
ing deviance) may not be sufficient; a preferable method is often to infer a model
parameter from experimental data by solving an inverse problem [39, 47, 54]. In
principle, the kernel of the model simulation of an experiment, whose inverse maps
data onto inferred quantities, can always be derived, although this may be a sub-
stantial undertaking for a complex, nonlinear experiment. The labor is ultimately
justified because such a model-based approach to deducing parameters from exper-
iments ought to be the most accurate available (provided the simulation is based
on the correct physics!). The inverse problem approach commonly includes regu-
larization to treat the effects of noise and ill-posedness in the parameter evaluation.
The outcome of the regularization calculation is a quantitative estimation of the
degree to which the parameter can be determined. (Illustrations of the use of inverse
methods to assess the level of detail deducible for single-mode cohesive laws from
fracture data can be found in [17, 43].) Thus this formal analysis has the important
virtue of quantifying the degree to which mechanisms and parameters have an influ-
ence on experiments; if the parameters cannot be determined because of noise and
ill-posedness, the measurable outcome of the experiment has no information in it
that determines the parameter. In other words, the parameter is not relevant to the
engineering property being measured.

3.3 The System Management Challenge

Figure 3.2 presents the composition of a virtual test in terms of disciplines, in
approximately one-to-one correspondence with the schematic of Fig. 3.1. At least
six distinct disciplines can be identified, peopled by researchers and engineers who
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Fig. 3.2 Disciplinary composition of a virtual test. The general layout corresponds to that of
Fig. 3.1

have little tradition of joint work. The framework that embraces these disciplines
comprises two distinguishable activities, namely Systems Engineering and Systems
Science. Systems Engineering governs the functional definition of the virtual test,
coordination of people working on its development, adhesion to timelines in devel-
opment work, and assuring the quality of the final product. Systems Science deals
with coupling the scientific details that are involved in work performed in different
disciplines.

A number of theoretical disciplines contribute to the formulation of the multi-
scale simulations (central column in Fig. 3.2), ranging from engineering fracture
mechanics and damage mechanics for modeling at the coarser scales, through
applied mechanics for modeling micromechanisms using continuum mechanics,
down ultimately to computational physics and chemistry for molecular dynamics
simulations (either classical or quantum based) and the analysis of inter-atomic
bonds. The boundary matching problems of linking models operating at vastly dif-
ferent time and length scales have been addressed by a newly evolving branch of
mathematics, distinct from any of the specialties used in modeling a single scale
[7, 29, 46, 57, 58].

The column headed “experimental physics” spans the traditional disciplines
of non-destructive evaluation (acoustics, X-radiography, electromagnetic methods,
thermal wave analysis), as well as computed tomography for retrieving three-
dimensional images, which has been developed furthest in the medical community.
But it also extends now to emerging areas of physics, especially the generation of
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high fluxes of coherent, short pulse radiation (X-rays, terahertz radiation) or parti-
cles (neutrons, positrons) generated using femtosecond laser pulses [12, 22, 56, 61].
Interesting challenges arise for materials modelers in mining relevant information
from new experiments based on these sources. A new role also exists for nanoscale
materials synthesis: can multifunctional materials be devised that enhance the sen-
sitivity of new experiments by interacting with the probing radiation or particle
fluxes?

The column headed “engineering testing” refers specifically to the discipline of
field engineers versed in the definition and use of standardized tests for structural
performance and reliability. This discipline includes the members of standards com-
mittees (e.g., within the American Society for Testing and Materials) and certifying
agencies (e.g., the U. S. Federal Aviation Authority).

Between models and engineering tests or models and experimental physics
fall mathematicians and statisticians. The techniques of model-based analysis of
experiments, inverse problem theory, decision theory, and Bayesian methods of
predicting distributions (e.g., for remaining life) given the condition of an exper-
imental result all have important roles in maximizing the flow of information from
experiments into models.

The last discipline in the virtual test paradigm is information science, which
contributes modular structures and protocols for linking disparate computational,
statistical and interfacing software. Information science addresses challenges that
are crucial to maximizing the benefit of investing in a virtual test system: how can
a virtual test system be constructed so that it can easily expand to incorporate new
levels of modeling or new classes of experimental data; and how can the system be
assured of continuing as a growing entity after the first generation of experts who
have created it have moved away to other projects? Part of the answer to these chal-
lenges must come from business success: a virtual test system will grow and survive
if it is profitable. But the practical issues of constructing the system in such a way
that data can flow freely among different disciplines, and modules can be easily
revised or added, must also be dealt with.

3.4 Experiments That Guide Model Formulations

Much of the taxonomy of damage mechanisms in polymer composite laminates is
well known through many decades of testing and post-mortem analysis. For the task
of identifying mechanisms, destructive sectioning prior to ultimate failure is often
acceptable, after which optical and electron microscopy will reveal details down to
submicron scales. Identified mechanisms include delamination cracking, large split-
ting cracks running in the loading direction within aligned plies, diffuse transverse
microcracking within off-axis plies, the microbuckling (kinking) of aligned fibers
under compression, ply buckling, global buckling, matrix crazing leading to hackle
cracks, matrix shear bands emanating from stress concentrators, debonding of the
fiber/matrix interface, fiber rupture, and fiber collapse in compression.
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Fig. 3.3 Images of stitches reinforcing a carbon/epoxy laminate at marked distances z behind a
mode II delamination crack tip: (a) optical images; (b) polarized reflected light images

An unusual example of information detectable on sections is shown in Fig. 3.3. A
mode II delamination crack has been grown through a carbon/epoxy laminate rein-
forced by stitching. The specimen has then been fixed in a bath of resin, sectioned
while still under load (specimen and grips together), and polished on a section that
passes through a series of individual stitches. The stitches seen in the figure are at
increasing distances from the delamination crack tip (which is out of frame to the
right) and the series therefore shows how the state of deformation varies as the crack
sliding displacement increases (from right to left). The deformation is revealed by
polarized reflected light microscopy, which picks up changes in the refractive index
of the polymer due to irreversible damage (crazing, etc.). Thus the light regions
show concentrations of pseudo-plasticity in the material. The plasticity is confined
mostly to the stitches themselves at these small crack sliding displacements; less
sensitive observations reported elsewhere show that the laminate also deforms at
larger sliding displacements, as the stitches press into it laterally [43, 55]. These
images of the distribution of plasticity in stitched composites provided essential
guidance to the formulation of models of the mechanics of the bridging supplied
by the stitches. They show that, in contrast to the case of stitches that bridge mode
I cracks, models of the mode II stitch movement and pullout that treat the stitch
as elastic could not be correct [15, 16]. Similar images of other zones of stress
concentration in composites would be very enlightening.

Information from imaged sections is nevertheless limited. In particular, a sec-
tion provides almost no information about the disposition of damage in three
dimensions and therefore limited information on the shape of cracks or interac-
tions between different damage mechanisms. A three-dimensional image can be
built up by serial sectioning or progressive polishing, but this is very expensive,
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provides poor information about any damage entities that lie almost parallel to the
exposed surface, and causes concern over possible changes in the damage state dur-
ing material removal. A much more satisfactory experiment probes the interior of
the composite without sectioning.

Early experiments to probe a material’s interior predominantly used X-rays and
acoustic imaging. Figure 3.4 shows damage mechanisms in a carbon/epoxy laminate

major splitting cracks 
(H-cracks) in 0°-ply

delamination
cracks

load axis
(a)

shear strain concentration 
in 0  ply (splitting crack)

6 mm

1

0.5

0

(b)

cohesive zone

outline of splitting 
crack in 0° ply

load axis

1

0.5

0

(c)

(d)

Fig. 3.4 (a) X-radiography images of a quasi-isotropic laminate with a circular hole loaded in ten-
sion [13] show splitting cracks, delaminations, and diffuse microcracking occurring predominantly
in the 45◦ plies. (b) Computed continuum damage distribution in 0◦ ply (blue undamaged; gray is
completely failed material) showing shear strain concentration that forms splitting crack. (c) Com-
puted damage in cohesive zone between 0◦ and 45◦ plies (blue is undamaged; gray is completely
failed material). (d) Initiation and evolution of damage in cohesive zone between 0◦ and 45◦ plies
at marked applied strains (blue is undamaged material; red is completely failed (traction-free)) [20]
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Fig. 3.5 X-ray computed tomography image of damage in a quasi-isotropic carbon/epoxy laminate
(Ian Sinclair, University of Southampton, UK, 2007) (Reproduced by kind permission)

loaded in tension-tension fatigue, revealed by X-ray radiography. The image is a
projection through the thickness of the laminate and therefore does not resolve depth
through the laminate, but the cracking systems are well defined and can be correlated
with plies by other means (although this would be more difficult in field applications
or for complex, thicker layups). This imaging is however destructive, in that the
material is significantly perturbed: the cracks are visible only if they are first filled
with a dye penetrant, which could modify any further crack or damage development
if the test were continued.

Continuing advances in X-ray computed tomography have recently led to very
exciting demonstrations of the possibilities for imaging internal damage nondestruc-
tively. Figure 3.5 shows microcracking and fiber breakage in a cuboidal volume
within a quasi-isotropic carbon/epoxy laminate loaded in tension along the 0◦ fiber
direction. This image was reconstructed from data taken at the European Syn-
chrotron Radiation Facility facility in Grenoble, using a high flux X-ray beam line.
The gray contrast in the image shows the fiber (light gray) and matrix (dark gray)
positions on the three planes furthest from the viewer that bound the image domain.
The orientations of the plies can be inferred from the shapes of the individual fibers
on these planes (either circles, ellipses, or lines). The colored features show damage
within the interior of the cuboid. A complex system of interacting fiber breaks (red),
delamination cracks (blue), and intraply transverse microcracks (gold) is revealed.
The spatial resolution of the damage imaging in this image is approximately 0.7
µm, which is an order of magnitude better than achieved in current medical imaging
or laboratory systems. The value of three-dimensional imaging is clear: the rela-
tion between the spatial distribution of different damage mechanisms is revealed.
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For example, a correlation is evident between the fiber breaks in the 0◦ ply and the
splitting cracks on neighboring plies, the former falling approximately on the same
plane as the splitting cracks.

3.5 Challenges in Observing Mechanisms

While the computed tomography represented by Fig. 3.5 offers a breakthrough in
the clarity with which damage mechanisms can be imaged, the depiction of damage
initiation and evolution remains far from complete. Consider, for example, the onset
of diffuse transverse microcracking in off-axis plies, e.g., a 90◦ ply. These cracks
are bounded in one direction by the ply thickness, but extend infinitely (or to the
edges of the component) in the fiber direction. Observations of analogous cracks
in thin films, where the growth process can be relatively stable due to ductility in
either the film or the substrate, suggests that extension in the fiber direction will
occur via the so-called tunneling crack mechanism (Fig. 3.6) [19, 23, 35, 36, 40, 53].
However, direct observation of the tunneling mode of propagation has not been
made for transverse microcracks in laminates.

The experimental challenges increase as microcrack initiation is considered at
finer scales: prior to tunneling propagation, an earlier phase of growth is necessary
to create a microcrack that has the tunneling configuration, i.e., that extends across
the thickness of the ply. This first phase begins with damage at a critical defect
within the ply, either an imperfection of the resin or a variation in the deployment
of fibers that creates a local stress concentration in the resin. The first observable
matrix microcrack will have a length similar to the spacing between two fibers
(∼1 µm in a carbon fiber composite). Theoretical studies suggest some surprising
possibilities. When the composite is loaded in tension with the stress axis perpen-
dicular to the fiber direction, the highest stress concentrations between fibers do
not necessarily trigger microcracks in planes normal to the load axis. Depending
on local fiber separations, the magnitude of residual stresses, and the integrity of
the fiber-matrix interface, the microcracks may actually initiate on planes paral-
lel to the load axis (Fig. 3.6c). This counter-intuitive prediction is corroborated by
experiments on a composite of large (150 µm) SiC fibers in a low-ductility Ti3Al
matrix [42]. (The predicted stress variations are independent of the scale of the
fibers in a linear material system.) Subsequent growth and coalescence of microc-
racks results in a transverse crack that is usually approximately normal to the load
axis over scales comparable to the ply thickness; but to understand the initiation
process, the possibility of non-normal cracks must be considered. A definitive exper-
iment for carbon/epoxy composites, where the scale is a factor of 20 finer than in
the SiC/Ti3Al composites, remains to be performed. Until that has been achieved,
modelers cannot be sure that they are describing the details of transverse ply crack
initiation correctly. Revealing experiments require spatial resolution inferior to the
spacing between fibers.

Similar experimental challenges confront those probing the interaction of
delamination cracks with transverse microcracks, the development of kink band
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Fig. 3.6 A typical challenge problem for experimental and modeling analysis of damage initiation
in a composite
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failures in compression within the interior of a laminate, the initiation of delami-
nations at free edges, etc. No direct observations have been reported in the literature
for any of these phenomena. A critical contribution to the development of virtual
tests is therefore the expansion of experimental imaging capabilities.

High resolution X-ray tomography such as that used to obtain the images in
Fig. 3.5 has the resolution required to resolve microcracks and even to measure
strain fields, if marker features can be identified or introduced (see [37]). However,
approximately 30 minutes are currently required to acquire images of the neces-
sary fidelity. Acquisition times several orders of magnitude lower than this would
open the possibility of monitoring damage evolution in real time during a test. Fur-
thermore the high resolution illustrated in Fig. 3.5 is only possible on specimens of
limited cross-section, currently 1mm× 1 mm, which is insufficient for most struc-
tural details of interest. Resolution can be traded for large field of view, but this
would limit the calibration data for models at the micromechanics scale. New high
flux, coherent X-ray sources, e.g., generated using high intensity femtosecond laser
pulses, might one day improve conditions to the point of permitting the scanning of
structural subcomponents, either in laboratory testing or for field inspection.

Other full-field techniques are available to image damage and strain fields at
larger scales, including thermoelastic stress analysis (e.g. [25]) and digital image
correlation (e.g. [34]), although these are both inherently surface imaging tech-
niques. There may be scope for embedding optical fibres (e.g. [21]) or using Raman
spectroscopy on carbon-containing fibers (e.g. [33]) to infer local strain distribu-
tions and damage extent in composite test structures. It is also worth noting the
increasing interest in multiple embedded sensors for structural health monitoring or
in situ non-destructive inspection, which offer data-rich paths to model calibration
and validation.

The projection that resolution and speed will continue to increase in the future
implies a continuing improvement in the quantification of damage mechanisms,
which will enable advances in the level of detail that can be incorporated in a mate-
rial model. A successful formulation of a virtual test must recognize this through a
model structure that can accommodate continual embellishment and refinement.

Furthermore, no single experimental technique will prove to be sufficient for
informing, calibrating, and validating models. The best route forward is to employ
multiple experimental techniques across a range of length scales in a complementary
fashion. Learning to exploit the information from qualitatively different experiments
by formal coupling to a comprehensive damage model represents a crucial challenge
in realizing the vision of a virtual test.

3.6 The Cycle of Calibration and Validation

Decisions about which mechanisms are important and what idealizations of them
are physically reasonable are subjective rather than quantitative; and they can be
supported by images that are imperfect or not amenable to quantification. For
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example, to see a crack even fuzzily is enough to recognize that a damage simu-
lation should permit fracture as a possibility. In contrast, calibration and validation
demand quantitative data. Therefore special experimental and theoretical challenges
arise in calibrating the physical models of damage that are embedded in a virtual
test.

Consider as an illustration the problem of calibrating the material constitutive
laws that represent the nonlinear failure processes depicted in Fig. 3.4a, including
diffuse microcracks, delaminations, and splitting cracks. Good qualitative simu-
lations of the evolution of these interacting mechanisms have been demonstrated
using hybrid stress-strain and traction-displacement models, in which two forms of
constitutive relation are used. When spatially continuous changes arise in the mate-
rial, the deformation is represented by a constitutive relation between the stress and
strain tensors, σ̄ (ε̄) (including dependence on time, history, etc.), i.e., by contin-
uum damage mechanics. This is a useful approximation for diffuse microcracking
in defining a top-down model that possesses the lowest order of detail in repre-
senting microcracks. The second form of constitutive law depicts a discontinuity
(or very large gradient) in the material displacement as a localized damage band,
which is a mathematically generalized crack across which stresses may continue to
be transmitted by partially failed material. As the crack opens, vector tractions, p,
applied to the crack surfaces equilibrate stresses in the bulk material. The needed
constitutive law is the relation p(u) between p and the displacement discontinu-
ity, 2u. This relationship is often called a cohesive model. Cohesive models are
useful for modeling the development of delaminations and other primary cracks
(Fig. 3.1b–d) [5, 10, 11, 14, 20, 24,26, 45,48–50, 59, 60].

The qualitatively successful predictions of delamination crack shapes shown
in Fig. 3.4 and in [20, 60] was obtained using nonlinear constitutive laws p(u)
and σ̄ (ε̄), whose shape was guessed from prior work on polymer adhesives and
micromechanical models; for quantitatively validated virtual tests, new calibration
of the laws appropriate for composites is essential. The cohesive law is especially
challenging, since it refers in polymer composites to nonlinear zones that are ∼1
mm or less in size. The inference of p(u) from nonlinearity in load-deflection data,
which works well for materials possessing larger cohesive zones ∼10 mm [43, 51],
is problematic for a 1 mm zone because specimen deflections are small during
the zone’s development. Once the crack is relatively large (well developed dam-
age zone), its behavior contains no information about p(u) other than

∫
pidui (the

work of fracture) [4, 18, 28, 52]. Alternative experiments that infer p(u) from crack
profiles in plane specimens such as the short shear beam or cantilever beam [17,43]
would need to resolve displacements around cracks that are barely discernible. Thus
none of the common methods in the literature appear immediately workable.

This particular calibration problem is complicated by the fact that the cohe-
sive law must be considered a vector (mixed-mode) relation. Simulations such as
those of Fig. 3.4 demonstrate very strong variations of the mode ratio both around
a delamination crack front and with crack size. The problem of determining mixed-
mode cohesive laws for delamination cracks has not even been addressed to date,
to our knowledge. (Tests that determine the critical energy release rate for a long
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mixed-mode crack are not enough.) A map of the vector displacement field around
an initiating crack would in principle be a sufficient measurement, but the questions
of how to make such a measurement and the accuracy required of it remain very
much open. New experimental methods for measuring very small crack displace-
ments, e.g., with high-resolution x-ray tomography, are very promising; however,
data acquisition and analysis for such experiments are challenging and yet to be
demonstrated. A simpler prospect may be to use the evolution of the macroscopic
crack shape as the calibrating information, since Fig. 3.4 and similar figures in
[13, 20, 38, 60] suggest that this is an information-rich experiment for determining
p(u). Current research continues to seek a calibration method, validated by testing
the accuracy to which ensuing predictions match fracture experiments.

3.7 Concluding Remarks

A functioning virtual test is a system of theoretical models, specialized laboratory
tests, and engineering field tests, linked by statistical and decision theory tools,
which only when taken in its entirety can satisfy the goal of substituting simulations
for a large fraction of real tests in a material design or material certification proce-
dure. The virtual test is a rich and complex system, requiring Systems Engineering
and Systems Science governance of activities in a number of disparate research and
engineering disciplines. Prior efforts to develop virtual tests for composite materi-
als (or other engineering or biological materials) appear not to have addressed the
assembly of the complete structure. Advances in modeling, computation and exper-
imental techniques over the past two decades make the development of a virtual test
a realistic goal; the major new challenge is achieving the integration of the necessary
disciplines.

This challenge should not be mistaken as merely the need for more experiments
or more modeling. The greatest gaps in the technology of virtual tests lie where
models and experiments should be unified. In particular, theorists are challenged by
(1) the need to participate in the design of new experiments that will yield the infor-
mation they need to inform and calibrate models and (2) the need for model-based
methods of inferring data from tests. Experimentalists are challenged by designing
experiments that yield the correct type of information for extending the scope of
models. Higher spatial and temporal resolution and three-dimensional imaging are
of course very useful, but more specifically experiments must be devised that probe
those aspects of materials damage that are critical to formulating and quantifying
models. The skill sets needed to meet these challenges are not necessarily to be
found among current modeling and experimental communities. Other disciplines,
especially statistics, decision theory, and physics, must be brought into the effort.

A virtual test should be a living, continually evolving system. Therefore a key
challenge is to create a structure that can support its maintenance. Both systems
engineering and systems science aspects exist in this challenge, with the whole
integrated by the tools of information science.
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Chapter 4
Analytical and Numerical Investigation
of the Length of the Cohesive Zone
in Delaminated Composite Materials

Albert Turon, Josep Costa, Pedro P. Camanho, and Pere Maimı́

Abstract An accurate prediction of the length of the cohesive zone ahead of a crack
tip is fundamental for the correct simulation of delamination in composite mate-
rials under both quasi-static and fatigue loading. To ensure a correct dissipation
of energy during delamination propagation, several cohesive finite elements have
to span the cohesive zone. The length of the cohesive zone depends on the mate-
rial properties, the geometry/size of the structure, and on the loading mode. This
chapter presents new expressions to estimate the length of the cohesive zone under
general mixed-mode loading conditions and for finite-sized geometries. The analyt-
ical model is validated by comparing its predictions with numerical results based
on cohesive-zone models. The relevance of the proposed analytical solutions to the
effective simulation of delamination is demonstrated by simulating delamination
growth under mixed-mode loading using meshes with the length of the elements
greater than the cohesive zone length.

4.1 Introduction

Cohesive zone models provide an ideal representation of the delamination process of
advanced composite materials. The excellent performance of cohesive zone models
in the simulation of delamination is due to the accurate kinematic representation of
the fracture process, based on a strong discontinuity in the displacement field, and to
the possibility to use constitutive models that correctly account for the the different
loading modes [19].
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However, cohesive zone models require an accurate representation of the stress
field ahead of a crack tip. This means that several finite elements are required in
the cohesive zone ahead of a crack tip. The authors have previously developed a
methodology that enables the use of coarse meshes ahead of a crack tip [21]. This
methodology relies upon the accurate estimation of the length of the cohesive zone
ahead of a crack tip.

The cohesive zone models developed for quasi-static loading conditions have
been recently enhanced to predict the propagation of delamination under fatigue
loading [20]. The accurate simulation of delamination growth under fatigue loading
also requires the accurate prediction of the length of the cohesive zone.

There are models able to predict the dimension of cohesive zones for isotropic
materials with infinite sizes loaded in pure mode I or mode II. However, no reli-
able models are available for the general case of non-isotropic materials with finite
dimensions under mixed-mode loading. Therefore, the objective of this work is to
propose a new analytical model to calculate the length of the cohesive zone in a
delaminated composite material under general loading conditions. A summary of
the models developed for infinite-size isotropic materials is presented. These mod-
els are generalized to predict the length of cohesive zones of orthotropic materials,
and a new analytical model accounting for the effects of finite-sized geometries
and mixed-mode loading is presented. The analytical solutions are compared with
the numerical results obtained using a cohesive zone model implemented in a finite
element code [19].

4.2 Length of the Cohesive Zone for Isotropic Materials

There are several approaches for the determination of the size of the cohesive zone
ahead of a crack tip. One approach derives from the Dugdale’s model [7]. By linear
superposition of the crack tip stress intensity factors produced by the external loads
and by the internal cohesive tractions along the crack tip wake, the length of the
cohesive zone, l∞cz, is computed assuming that the total stress intensity factor at the
crack tip is equal to zero [5]. Using this approach, the length of a cohesive zone
subjected to constant tractions of an infinite specimen under remote loading is:

l∞cz =
π
8

K2
Ic

(τo)2 (4.1)

where KIc is the critical stress intensity factor, and τo is the maximum traction in
the cohesive zone, i.e., the interface strength.

Another approach to estimate the size of the cohesive zone in a ductile solid
is the Irwin’s model [13]. The generalization of the Irwin’s model for softening,
quasi-brittle materials was proposed by Bažant et al. [2]. In the Irwin/Bažant model,
the traction profile in the inelastic zone ahead of the crack tip follows a general
expression:
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τ = τo
(

x
lcz

)n

(4.2)

where n is a material parameter.
In the elastic zone, the traction profile follows the expression given by the Linear

Elastic Fracture Mechanics (LEFM) solution:

τ =
KI√

2π (x− r1)
(4.3)

The size of the inelastic zone, lcz, also called cohesive zone or fracture process
zone, is obtained by assuming that the traction given by Eqs. (4.2) and (4.3) must be
equal at x = lcz, and that the areas A1 and A2 represented in Fig. 4.1 are equal [2].
Assuming that there are no size effects, the crack propagates when the stress inten-
sity factor KI equals to the critical value KIc. Therefore, the size of the cohesive zone
when the crack is propagating in a self-similar way can be solved using the previous
equations, resulting in:

l∞cz =
n + 1
π

K2
Ic

(τo)2 (4.4)

Cox and Marshall [5] proposed an alternative approach to predict the length of
the cohesive zone. The Cox and Marshall [5] model is based on the concept of a
bridged crack, where the length of the bridging zone is calculated by imposing two

Fig. 4.1 Stress profile ahead of the crack tip



www.manaraa.com

80 A. Turon et al.

Table 4.1 Length of the cohesive zone and equivalent value of the parameter M

M

Hui et al. [12]
2

3π
= 0.21

Irwin [13]
1
π

= 0.31

Bažant et al. [2]
n+1
π

Dugdale [7], Barenblatt [1]
π
8

= 0.39

Cox and Marhall [5]
π
4

= 0.785

Rice [16], Falk et al. [8]
9π
32

= 0.88

conditions: the stress intensity factor at the crack tip must be equal to the critical
value for crack propagation, and the crack opening at the beginning of the cohesive
zone must be equal to its critical value. Using these two conditions the length of the
cohesive zone is given as [5]:

l∞cz =
π
4

K2
Ic

(τo)2 (4.5)

The prediction of the cohesive length using all the approaches previously
described may be generalized by the following equation:

l∞cz = M
K2

Ic

(τo)2 (4.6)

where M is a factor that depends on the model used and/or the constitutive rela-
tion of the material. Some of the different values of M given from different authors

are summarized in Table 4.1. The quantity K2
Ic

(τo)2 is the characteristic length of the

material introduced by Hillerborg [11].

4.3 Length of the Cohesive Zone for Orthotropic Materials

Assuming that Linear-Elastic Fracture Mechanics applies, Irwin’s model relates the
energy release rate, GI , to the stress intensity factor, KI , as:

GI =
K2

I

E ′ (4.7)

where E ′ is an elastic modulus that depends on the state of stress. Under plane
stress, E ′ is the Young modulus of the material, while under plane strain E ′ = E

1−ν2 .
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Therefore, the length of the cohesive zone under mode I loading for isotropic
materials can be written as a function of the fracture toughness of the material GIc:

l∞cz = M
E ′GIc

(τo)2 (4.8)

For orthotropic materials under mode I or mode II loading, the relation between
the energy release rate and the stress intensity factor can be written as [9]:

GI = K2
I

(a11a22

2

) 1
2

[(
a22

a11

) 1
2

+
2a12 + a66

2a11

] 1
2

(4.9)

GII = K2
II

a11√
2

[(
a22

a11

) 1
2

+
2a12 + a66

2a11

] 1
2

(4.10)

where a11,a22,a12 and a66 are the components of the compliance matrix.
Therefore, the length of the cohesive zone for orthotropic materials under pure

mode I or mode II loading can be written as:

l∞Icz = MI
E ′

IGIc(
τo

3

) (4.11)

l∞IIcz = MII
E ′

IIGIIc(
τo

shear

) (4.12)

where E ′
I and E ′

II are obtained from Eqs. (4.9) and (4.10) as:

E ′
I =
(a11a22

2

)− 1
2

[(
a22

a11

) 1
2

+
2a12 + a66

2a11

]− 1
2

(4.13)

E ′
II =
(

a11√
2

)−1
[(

a22

a11

) 1
2

+
2a12 + a66

2a11

]− 1
2

(4.14)

Under plane stress, a11 = 1
E11

, a22 = 1
E22

, a12 = − ν12
E22

and a66 = 1
G12

. Therefore,
Eqs. (4.13) and (4.14) can be written for plane stress problems as:

E ′
I =
(

E22

Q

)
(4.15)

E ′
II =

E22

Q

(
E11

E22

) 1
2

(4.16)
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where:

Q =
1
2

√√√√2

[(
E22

E11

) 1
2

−ν21

]
+

E22

G12
(4.17)

Under plane strain, the variables a11,a22,a12 and a66 in equations (4.13) and

(4.14) are: a11 = 1
E11

− ν2
31

E33
, a22 = 1

E22
− ν2

32
E33

, a12 = − ν12
E11

− ν31ν32
E33

and a66 = 1
G12

.

4.3.1 Length of the Cohesive Zone Under Mixed–Mode Loading

Under mixed mode loading, the mixed–mode traction vector is defined as [19]:

τ2 = τ2
3 + τ2

shear (4.18)

where τ3 and τshear are respectively the normal and shear components of the traction
vector. Using Eq. (4.3), an equivalent mixed-mode stress intensity factor is defined
as:

K2 = K2
I + K2

II (4.19)

where the mixed-mode stress intensity factor reads:

K2 = GEm (4.20)

G is the mixed mode energy release rate and Em is an equivalent mixed-mode Young
modulus. The mixed mode energy release rate G can be written as:

EmG = EIGI + EIIGII (4.21)

Defining the mode ratio, B, as:

B =
GII

GI + GII
(4.22)

with G = GI +GII . Using Eqs. (4.21) and (4.22), the equivalent mixed-mode Young
modulus reads:

Em = EI (1−B)+ EIIB (4.23)

Using the same approaches that for pure mode loading, the length of the cohesive
zone under mixed-mode ratio reads:

l∞cz = MEm
Gc

(τo)2 (4.24)

where Gc is the mixed-mode fracture toughness of the material and τo is the
equivalent interface strength under mixed-mode loading. The mixed-mode fracture
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toughness can be obtained from the pure mode fracture toughness of the material
using the expression proposed by Benzeggagh and Kenane [3]:

Gc = GIc +(GIIc −GIc)Bη (4.25)

where η is a mixed-mode interaction parameter. The equivalent interface strength
under mixed-mode loading, τo, can be related to the pure mode interface strengths
using the expression [19]:

(τo)2 = (τo
3 )2 +

[
(τo

shear)
2 − (τo

3 )2
]

Bη (4.26)

where τo
3 and τo

shear are the interface strengths under mode I and shear mode loading,
respectively.

4.4 Generalization of the Length of the Cohesive Zone
for Finite-Sized Geometries

The models used for the estimation of the cohesive length outlined in Sect. 4.2
assume that the crack propagates unstably when the applied energy release rate is
equal to the fracture toughness of the material, Gc. However, depending on the spec-
imen geometry, unstable crack propagation occurs before the maximum value of the
fracture toughness is attained. The alternative method proposed here to predict the
length of the cohesive zone under mode I loading is based on the relation between
this length and the size effect experienced by the structure.

Schematically representing the R-curve, Fig. 4.2, it is observed that the applied
energy release rate that produces unstable propagation, GIu is equal to the value
where the R-curve and the GI curve are tangent.

The applied energy release rate is a function of the geometry:

GI(a,h) =
1
E ′σ

2
Nhk(a,h)2 (4.27)

where σN is a nominal stress [2], h is a geometry-dependent quantity, and k(a,h)
is the shape factor for KI . For a double-cantilever beam (DCB) specimen, taking h
as the thickness of the specimen arm and B the width of the specimen, the applied
energy release rate reads:

GI(a,h) =
12P2a2

E ′B2h2 (4.28)

By comparing Eqs. (4.27) and (4.28) the nominal stress σN and the shape factor
k(a,h) used in Eq. (4.27) are given as:

σN =
P
bh

(4.29)

k(a,h) = 2
√

3
a
h

(4.30)
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Fig. 4.2 Stress profile ahead of the crack tip

The applied energy release rate at the point where the R-curve and the G-curve
are tangent is:

GIu(a,h) =
1
E ′σ

2
Nuhk(a,h)2 (4.31)

where σNu is the ultimate nominal stress that depends on the specimen geometry. It
is assumed here that Bažant’s size effect law [2] holds, i.e.,

σNu =
B f ′t√
1 +

h
hI

(4.32)

where hI is a characteristic length that depends on the material and on the struc-
ture [2]. The parameter B f ′t is related to the fracture toughness of the material
as:

B f ′t =

√
GIcE ′

hIk(a0,h)2 (4.33)

Using Eqs. (4.32) and (4.33) in Eq. (4.31), the applied energy release rate for
unstable propagation reads:

GIu(a,h) =
GIc(

1 +
h
hI

) h
hI

(
k(a,h)
k(a0,h)

)2

(4.34)



www.manaraa.com

4 Analytical and Numerical Investigation of the Length of Cohesive Zone 85

For brittle materials, such as carbon-epoxy composites, the length of the cohesive
zone is small. Therefore, the shape factor of the specimen with the initial crack
length, k(a0,h), and the shape factor when unstable crack growth occurs are similar,
and the ratio between the shape factor of the initial crack length and the shape factor
when unstable crack growth starts can be assumed to be approximately equal to 1:

k(a,h)
k(a0,h)

≈ 1 (4.35)

Using Eq. (4.35) in Eq. (4.34), the energy release rate required for unstable
propagation is:

GIu(h) =
GIch

(h + hI)
(4.36)

Therefore, since unstable crack propagation for finite-sized geometries occurs at
an applied energy release rate smaller than the fracture toughness of the material, the
length of the cohesive zone for finite-sized geometries is smaller than for infinite-
sized geometries and reads:

lIcz(h) = MI
GIu(h)E ′(
τo

3

)2 =
h

(h + hI)
MI

GIcE ′

(τo
3 )2 =

h
(h + hI)

l∞Icz (4.37)

4.4.1 Mode II

Using an approach similar to that presented for mode I loading, the energy release
rate for unstable propagation under mode II loading is obtained replacing GIu and
GIc by GIIu and GIIc in Eqs. (4.33) and (4.34). Therefore, GIIu reads:

GIIu(a,h) =
GIIc(

1 +
h

hII

) h
hII

(
k(a,h)
k(a0,h)

)2

(4.38)

For the end-notched flexure (ENF) test, the shape factor k(a,h) is given as:

k(a,h) =
3
√

2
2

2L−a√
h

(4.39)

where L is the specimen length.
Assuming that the length of the cohesive zone is small, compared to the ini-

tial crack length, that is k(a,h)
k(a0,h) ≈ 1, the energy release rate required for unstable

propagation is:

GIIu(h) =
GIIch

(h + hII)
(4.40)
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Therefore, the length of the cohesive zone for finite-sized geometries under mode
II loading is smaller than for infinite-sized geometries and reads:

lIIcz(h) =
h

(h + hII)
MII

GIIcE ′

(τo
shear)

2 =
h

h + hII
l∞IIcz (4.41)

4.4.2 Mixed-Mode I and II

Using the same hypothesis and conditions as those used for mode I and mode II
loading, the length of the cohesive zone for finite-sized geometries under mixed-
mode loading conditions can be estimated using the equation

lcz(h) =
h

(h + h0)
l∞cz (4.42)

where h0 is a characteristic length under mixed-mode loading conditions. h0 is
related to the pure mode quantities hI and hII . Equation (4.42) is a general expres-
sion for the prediction of the cohesive zone of finite-sized geometries under any
general loading conditions.

4.5 Validation of the Model

4.5.1 Numerical Model

The proposed analytical solutions for the length of the cohesive zone are compared
with numerical predictions. The cohesive zone models previously developed by the
authors [4,19] are used in the predictions of the length of cohesive zones for different
geometries and loading modes.

The constitutive behavior of cohesive elements is implemented using a cohesive
damage zone model that relates the tractions, τ , to the displacement jumps, ∆ , at
the interfaces where crack propagation occurs. Damage initiation is related to the
interfacial strength of the material, τo. When the energy dissipated is equal to the
fracture toughness of the material, Gc, the traction is reduced to zero and new crack
surfaces are formed.

The constitutive law used in this work is a bilinear relation between the tractions
and the displacement jumps [4, 19]. The bilinear cohesive law uses an initial linear
elastic response before damage initiation, as shown in Fig. 4.3. This linear elastic
part is defined using a penalty stiffness parameter, K, that ensures a stiff connec-
tion between the surfaces before crack propagation. The interfacial strength and the
penalty stiffness define an onset displacement jump, ∆o, related to the initiation of
damage.
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Fig. 4.3 Bilinear constitutive
law used for quasi-static
loading

Displacement Jump, λ

T
ra

ct
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 τ

The displacement jump across the interface [[ui]], is obtained from the displace-
ments of the points located on the top and bottom sides of the interface, u+

i and u−i ,
respectively:

[[ui]] = u+
i −u−i (4.43)

where u±i are the displacements with respect to a fixed Cartesian coordinate system.
The components of the displacement jump vector in the local coordinate system
on the deformed interface, ∆m, are expressed in terms of the displacement field in
global coordinates:

∆m =Θmi [[ui]] (4.44)

whereΘmi is the rotation tensor, defined in [4, 19]. The constitutive operator of the
interface, D ji, relates the tractions, τ j, to the displacement jumps, ∆i:

τ j = D ji∆i (4.45)

The damage model simulates delamination onset and delamination propagation
using a single scalar variable, d, to track the damage at the interface under general
loading conditions. An initiation criterion that results from the Benzeggagh-Kenane
fracture criterion [3] (B-K) ensures that the model accounts for changes in the
loading mode in a thermodynamically consistent way and avoids restoration of
the cohesive state. The constitutive model prevents interpenetration of the faces of
the crack during closing, and a Fracture Mechanics-based criterion is used to predict
crack propagation. The norm of the displacement jump tensor, λ , is used to compare
different stages of the displacement jump state. The equivalent displacement jump
is a non-negative and continuous function, defined as:

λ =
√
〈∆3〉2 +(∆shear)

2 (4.46)

where 〈·〉 is the MacAuley bracket defined as 〈x〉 = 1
2 (x + |x|).

The displacement jump in mode I, i.e., normal to midplane is ∆3. The displace-
ment jump tangent to the midplane, ∆shear, is computed with the Euclidean norm of
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the displacement jump in mode II and mode III:

∆shear =
√

(∆1)
2 +(∆2)

2 (4.47)

A bilinear cohesive law for mixed-mode delamination can be constructed by
determining the initial damage threshold ∆o from the criterion for damage initia-
tion and the final displacement jump, ∆ f , from the formulation of the propagation
surface or propagation criterion [19]. For the B-K fracture criterion, the mixed-mode
displacement jump for damage initiation is [19] is

∆o =
√(

∆o
3

)2 +
[(
∆o

shear

)2 − (∆o
3

)2]
Bη (4.48)

where the B-K parameter η is obtained by curve-fitting the fracture toughness of
mixed-mode tests.

The displacement jump for final fracture is also obtained from the critical
displacement jumps as

∆ f =
∆o

3∆
f

3 +
(
∆o

shear∆
f

shear −∆o
3∆

f
3

)
Bη

∆o (4.49)

During overload, the state of damage d is a function of the current equivalent
displacement jump λ :

d =
∆ f (λ −∆o)
λ (∆ f −∆o)

(4.50)

The corresponding tractions can be written as

τi = δi jK

[
1−d

(
1 + δ3 j

〈−∆ j
〉

∆ j

)]
(4.51)

where the Kronecker δ3 j is used to prevent the interpenetration of the surfaces of a
damaged element when contact occurs [19]. In summary, by assuming that tough-
nesses and strengths in modes II and III are equal to each other, it is shown that the
mixed-mode constitutive equations of a cohesive element are defined by five mate-
rial properties and three displacement jumps: GIc, GIIc, τo

3 , τo
shear, K, ∆1, ∆2, and ∆3.

This formulation of the damage model allows an explicit integration of the consti-
tutive model and ensures consistency in the evolution of damage during loading,
unloading, and changes in mode mixity. The derivation and implementation of the
cohesive damage model is described in [18, 19] and the reader is referred to those
sources for further details.

4.5.2 Mode I loading

Several simulations of the Double Cantilever test (DCB) for different heights of the
arms were performed to measure the length of the cohesive zone predicted by the
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numerical model. The cohesive damage model presented in previous section was
implemented in ABAQUS [10] by means of a user element subroutine [18,19]. The
finite element model is composed of four-node plane strain elements for the arms,
which are connected by four-node cohesive elements representing the interface.
A very refined mesh has been selected in order to correctly capture the tractions’s
profile ahead of the crack tip. The length of the cohesive elements is 0.01 mm.
Sixteen elements are used through the thickness of each arm.

The following material properties have been used in the numerical simulations.
A set of simulations of the DCB test for a range of the specimen arm heights

between 1.55 and 12.4 mm and an aspect ratio of a0
h = 23 were carried out. The

simulations were repeated with an aspect ratio of a0
h = 13. The load-displacement

curves for three of the specimens simulated with a0
h = 13 are shown in Fig. 4.4.

The length of the cohesive zone is obtained from the FE simulations, measuring
the length that span the cohesive elements with a damage d ∈ (0,1), i.e., the dam-
aged elements that are not completely open. As shown in Fig. 4.5, the length of the
cohesive length was found to be independent of the aspect ratio of the specimen, but
dependent on the height of the arms of the specimen.

The constants for hI and MI were calculated by a nonlinear regression of the
numerical data. The values obtained are hI = 2.5 and MI = 0.66. The analytical
prediction of the cohesive zone length given by Eq. (4.37) with MI = 0.66 and hI =
2.5 is also plotted in Fig. 4.5. It is worth noticing that the parameter MI obtained
is approximately equal to the value obtained using Bažant’s model with n = 1, i.e.,

Fig. 4.4 Load-displacement curves obtained for some of the different specimens simulated
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Fig. 4.5 Length of the cohesive zone under mode I loading for different specimen’s arm thickness

assuming a linear distribution of tractions ahead of the crack tip. The length of the
cohesive zone for finite-sized specimens under mode I loading can also be estimated
using the model proposed by Smith [17] and later adopted by Yang and Cox [22],
which is based on the following expression:

lIcz(h) =
(

GIcE ′

(τo
3 )2

) 1
3

h
3
4 (4.52)

Figure 4.5 shows that the analytical expression proposed here accurately predicts
the length of the cohesive zone as a function of the thickness of the arm of the
DCB specimen. It is also observed in Fig. 4.5 that the prediction of the length of the
cohesive zone using Eq. (4.52) is less accurate, specially for thicker specimens.

4.5.3 Mode II Loading

Several simulations of the Four-Point End Notched Flexure test (4-ENF) for dif-
ferent heights of the arms were performed to measure the length of the cohesive
zone. The length of the cohesive elements used is 0.04 mm. Eight elements are used
through the thickness of each arm. A coarser mesh than for mode I simulations is
used to reduce the computation time. However, this change in the mesh does not
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Fig. 4.6 Length of the cohesive zone under mode II loading for different specimen’s arm thickness

affect the results since the mesh is still very refined, being the length of the cohesive
elements much smaller than the length of the cohesive zone.

The results obtained from the FEM simulations are shown in Fig. 4.6. The pre-
diction of the length of the cohesive zone using Eq. (4.41) with MII = 1.03 and
hII = 2.5 mm is also plotted together with the prediction of the length of the cohe-
sive zone using the model presented by Massabò and Cox [14], where the length
of the cohesive zone for finite-sized geometries is predicted using the following
equation:

lIIcz(h) =

√(
GIIcE ′

(τo
3 )2

)
h (4.53)

A good agreement between the length of the cohesive zone obtained from the
FEM simulation and the prediction using Eq. (4.41) is observed. The prediction
using Massabò and Cox model, Eq. (4.53), provides a reasonable approximation
but it is less accurate than the model proposed here.

4.5.4 Mixed-Mode Loading

Several simulations of the Mixed Mode Bending test (MMB) for different heights
of the arms were performed to measure numerically the length of the cohesive zone.
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Fig. 4.7 Length of the cohesive zone under mixed-mode loading for different specimen’s arm
thickness

The finite element mesh is the same as that used for the 4ENF test simulations. Two
different mixed mode ratios, B = 50% and B = 80% were simulated. The measure
of the length of the cohesive length obtained from the FEM simulations is shown
in Fig. 4.7 for mode I, mode II and mixed-mode loading. The numerical predic-
tion using Equation (4.42) with the parameters M given in Table 4.3 and h0 = 2.5
is represented together with the FEM data in Fig. 4.7. A good agreement between
predicted and measured lengths of the cohesive length is observed for the different
mixed-mode ratios.

It is observed that the parameter M that defines the ratio between the length of
the cohesive zone and the Hillerborg’s material constant, varies with the mode ratio.
This variation of the parameter M with the mixed-mode ratio can be related to the
pure mode values, MI and MII , and the mixed-mode ratio B using the expression:

M = MI −η ′B +(MII −MI +η ′)B2 (4.54)

where η ′ is a mixed-mode interaction parameter. The parameter η ′ used here is
η ′ = 1.14.
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4.6 Updated Engineering Solution to Use Coarse Meshes

In order to obtain accurate numerical results using cohesive zone models, the trac-
tions in the cohesive zone must be accurately represented by the finite element
spatial discretization [21]. The number of elements in the cohesive zone is:

Ne =
lcz

le
(4.55)

where le is the mesh size in the direction of crack propagation. When the cohesive
zone is discretized by too few elements, the distribution of tractions ahead of the
crack tip is not represented accurately. Therefore, a minimum number of elements,
Ne, is needed in the cohesive zone to get successful numerical results.

One of the drawbacks in the use of cohesive zone models is that very fine meshes
are needed to assure a reasonable number of elements in the cohesive zone. The length
of the cohesive zone given by Eq. (4.8) is proportional to the fracture energy release
rate (Gc) and to the inverse of the square of the interfacial strength τo. For typical
graphite-epoxy or glass-epoxy composite materials, the length of the cohesive zone
is smaller than one or two millimeters. Therefore, according to Eq. (4.55), the mesh
size required in order to have more than three elements in the cohesive zone should be
smaller than a millimeter. The computational requirements needed to analyze a large
structure with these mesh sizes may render most practical problems intractable.

An alternative to using fine meshes of cohesive elements was proposed by Turon
et al. [21]. The approach consists in reducing the strengths τo

3 and τo
shear such that

the length of the cohesive zone increases to cover at least three elements. The
propagation of an existing delamination can be considered to be driven by the
energy release rate, which is calculated more accurately when the damage zone
is elongated. Results presented in [6,15,21], show that using this approach the com-
putational cost of the simulations is reduced considerably and render the analysis of
large structures possible to be handled.

The approach proposed in [21] can be generalized for specimens with finite
dimensions under mixed–mode loading by using an equivalent strength, τo, reduced
by a factor fr given by:

fr =
τo√

Mh
h + h0

EmGC

Nele

(4.56)

It is worth noticing that the reduction factor fr can be computed directly using
the mixed-mode ratio B and pure mode quantities, since the parameters Em, Gc, τo,
and M can be expressed as a function of the pure mode quantities using Eqs. (4.23),
(4.25), (4.26), and (4.54), respectively.

Having defined the reduction factor fr, the modified mode Iand mode II strengths to
be introduced in theFEMmodelarecalculated from thedamageactivation function as:

τo
3 = min(τo

3 , frτo
3 ) (4.57)

τo
shear = min(τo

shear, frτo
shear) (4.58)
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Fig. 4.8 Load-displacement curve of the lever point for different length of the elements ahead of
the crack tip

Table 4.2 Interface and elastic properties used

E11(GPa) E33 = E22(GPa) G12 = G13(GPa) G23(GPa) ν12 = ν13 ν23

120 10.5 5.2 5.25 0.3 0.51

GIc(kJ/m2) GIIc(kJ/m2) τ0
2 = τ0

1 (MPa) τ0
3 (MPa) K (N/mm3) η

0.26 1.002 30 45 106 1.45

The MMB test with a mixed-mode ratio of 50% and an arm height of 12.4 mm
was simulated for different mesh sizes. The load-displacement curve at lever point
obtained are shown in Fig. 4.8. It is observed that the FEM results for mesh sizes
larger than 1 mm do not converge to the solution obtained using the refined mesh.

To obtain converged results with coarse meshes, the procedure presented in this
section was used. The mode I and mode II interface strengths, 30 and 45 MPa respec-
tively, for the FEM models with le = 2.5, 5 and 10 mm, were reduced according
to Eq. (4.58) where the material properties used are given in Tables 4.2 and 4.3.
Five element were chosen to span the cohesive zone (Ne = 5). The results obtained
are shown in Fig. 4.9. It is observed that load-displacement curves obtained using
the reduced strengths are significantly different to those obtained with the original
properties (Fig. 4.8), and converge to the solution obtained using the refined mesh.
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Table 4.3 Values of the parameter M

MI M50% M80% MII

0.66 0.51 0.66 1.03

Fig. 4.9 Load-displacement curve of the lever point for different lengths of the elements ahead of
the crack tip, reducing interface strengths

Another simulation was done to demonstrate that the reduction factor fr needs
to be computed for a unique mode-ratio, and that the mode I and mode II strengths
must be reduced by the same factor fr. The mode I and mode II strengths were
lowered independently, computing a reduction factor for mode I, frI = 0.22, and
another for mode II, frII = 0.51, using in both cases the pure mode loading values
and Ne = 5. The resulting load-displacement curve was added to Fig. 4.9 (with the
label asymmetric reduction). It can be observed that the load-displacement curve
obtained with the asymmetrical reduction of the interface strengths does not con-
verge to the correct solution. If the pure mode interface strengths are lowered by a
different factor, the shape of the initiation surface changes and, therefore, the results
of the simulation become inaccurate, specially if the mode ratio changes during the
simulation.

Usually, the length of the cohesive zone is smaller for mode I than for other
loading modes. Therefore, in problems where the mixed-mode ratio is not known or
may change during the propagation of delamination, the reduction factor fr can be
computed using the pure mode I properties.
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4.7 Conclusions

An investigation of the length of the cohesive zone in delaminated composite mate-
rials was presented. It was shown that the length of the cohesive zone depends
on the material properties, the geometry/size of the structure, and on the loading
mode. New expressions to estimate the length of the cohesive zone of finite-sized
specimens under general loading conditions were derived.

The accuracy of the model was assessed by comparing its predictions with
numerical results obtained in simulations of test specimens loaded in pure mode I,
pure mode II, and mixed-mode I and II. The numerical simulations were per-
formed using a cohesive zone model previously developed by the authors and
implemented in ABAQUS as a user-written subroutine. A good agreement between
predictions and experiments was obtained for all loading situations and sizes of the
test specimens.

Finally, the model presented was used to simulate delamination propagation
in composites using coarse meshes. A methodology previously developed by the
authors to simulate delamination using coarse meshes has been updated to be used
under any general loading situation and specimen geometry. The results obtained
using this methodology yield converged solutions even for elements that are ten
time larger than the nominal length of the cohesive zone.
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Chapter 5
Combining Elastic Brittle Damage
with Plasticity to Model the Non-linear
Behavior of Fiber Reinforced Laminates

Clara Schuecker and Heinz E. Pettermann

Abstract The present work is concerned with modeling the non-linear behavior
of continuous fiber reinforced laminates with a special emphasis on loading con-
ditions that lead to high ply shear stresses. Typically, the modeling of non-linear
laminate behavior focuses on damage mechanics approaches and assumes that the
non-linearity is caused by brittle matrix cracking. Based on the correlation of exper-
imental data and modeling results, this assumption seems to hold true for load cases
in which layers experience mainly tensile stresses. Under shear dominated loads,
however, it has been found that the agreement between tests and model predictions
is less satisfactory. Additionally, considerable permanent strains develop under such
loading conditions that cannot be explained by brittle mechanisms alone.

Here, a model is presented that combines damage mechanics with a plasticity
law to capture both degradation of stiffness due to cracking and residual strains
accumulated under shear loads. It is assumed that damage starts to develop close
to the first ply failure load and any non-linear behavior prior to the onset of dam-
age is attributed to plastic shear strains. Predictions of the model are compared to
experimental data and are shown to give improved correlation to experiments under
shear dominated loading. By taking residual stresses into account, the model is also
able to explain discrepancies in the shear behavior derived from two different test
methods. Furthermore, the combined damage/plasticity model captures the accu-
mulation of residual strains, the non-linear behavior observed in uniaxial transverse
compression tests, and the influence of transverse normal stress on the non-linear
shear behavior reported in the literature.
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5.1 Introduction

The present work is concerned with modeling the non-linear behavior of continu-
ous fiber reinforced laminates made of polymer matrix composite (PMC) plies. The
modeling of non-linearity in such laminates has been a topic of active research over
the past decades. Owing to the typically brittle behavior of polymers used in PMCs
for structural applications, it is usually assumed that the non-linear behavior is a
result of brittle cracking inside the matrix material (or at the fiber/matrix interface)
leading to a degradation of ply and laminate stiffness. Therefore, previous model-
ing efforts have been focused on continuum damage mechanics [13,21]. Within this
framework, cracks are treated in a homogenized manner to predict reduced stiff-
nesses of the material. Many continuum damage models for plane stress states have
been presented in the literature [1, 2, 4, 6, 12, 20, 24, 25, 27]. These models have
proven to be very successful in predicting the non-linear behavior under mono-
tonic loading if the damaged plies experience primarily tensile stresses normal to
the fibers. Under shear dominated loading, however, comparisons between model
predictions and experimental data have been less satisfactory. The main difference
between the behavior of a single PMC ply or uni-directional (UD) laminate under
transverse tension and under shear is that there is almost no non-linearity in the ten-
sion case but a severe non-linearity in shear tests. Similarly, the behavior of a ply
embedded in a laminate shows much greater non-linearity under shear loading than
under transverse tension.

Recent research implies that the mechanisms leading to the non-linear behavior
under shear dominated loading cannot be attributed to brittle damage alone. Varna
et al. [29] studied the damage behavior of multi-directional laminates containing
off-axis plies and found that when the off-axis plies are subjected to high shear
stresses they show a highly non-linear load response but no observable cracks. For
laminates where the off-axis plies are experiencing high transverse tensile stresses,
on the other hand, the increasing non-linearity correlates with increasing crack den-
sity. A similar observation was made for out-of-plane shear behavior of a carbon
fiber/epoxy material [16] where the load response was clearly non-linear but it was
not possible to detect cracks, neither in the matrix nor the fiber/matrix interface.
Finally, another study [28] has shown that significant residual strains remain after
unloading of specimens tested under shear dominated loading. The shear stress –
shear strain behavior of a symmetric ±45 laminate tested under uniaxial tension is
given in [28] (see Fig. 5.1). Several unloading/reloading loops are performed during
the test which reveal that the non-linearity at first is related to considerable resid-
ual strains and the stiffness (indicated by dash-dotted lines) only changes at higher
loads. The residual strains are not likely to be caused by crack face friction since
transverse ply stresses in a ±45 laminate under uniaxial tension are tensile, which
would cause any existing cracks to open.

A possible source of the observed non-linear behavior under shear is plastic-
ity in the matrix constituent. The polymers normally used in PMCs for structural
applications, such as epoxy resins or PEEK, are known for their brittle behavior
in tensile tests. However, it has been reported that plastic or visco-plastic behavior
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Fig. 5.1 Shear stress–shear strain response of a symmetric ±45 laminate under uniaxial tension
including unloading/reloading loops showing the evolution of shear modulus and residual strains
[28]

can be observed under shear loading [8,10,30]. Furthermore, it has been found that
fiber reinforced epoxy under transverse compression fails in an inclined plane due to
shear stresses and that shear bands form in these planes prior to cracking [3]. There-
fore, it is likely that the residual strains are a result of matrix plasticity. Irrespective
of the actual mechanisms behind the residual strains, it is clear that an approach
other than elastic/brittle damage mechanics is necessary to capture these strains in a
model.

In the present work, a ply-level plasticity model for plane stress states that is
able to capture the residual strains is presented. The plasticity model is combined
with a damage model for brittle matrix failure that has previously been proposed
by the authors [22, 24, 25]. Based on available experimental data, the combined
damage/plasticity model assumes that stiffness degradation due to damage is related
to the onset of matrix cracking at first ply failure (FPF). Consequently, damage
accumulation only occurs in plies embedded in a multi-axial laminate close to the
FPF load. The non-linearity of embedded plies prior to damage onset and all non-
linearity in a single ply or UD laminate is due to plastic shear strains predicted by
the proposed plasticity model.

Note that the objective of the combined damage/plasticity model is to predict
residual strains and stiffness degradation. Hysteresis loops like the ones shown in
Fig. 5.1 during unloading and reloading, which could be the result of viscous effects,
are neglected in this study.
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5.2 Plasticity Model

The plasticity model proposed here is a phenomenological approach based on the
assumption that plastic deformation occurs in the form of shear bands with a spe-
cific orientation. As mentioned previously, experimental results of a study into the
micromechanics of PMC failure mechanisms suggest that the shear bands are pre-
cursors of later cracks [3]. It is therefore assumed further that the shear bands
develop in planes that have the same orientation as the fracture plane which is pre-
dicted here by Puck’s action plane failure criterion for plane stress states (Puck 2D)
[17, 20, 23].

According to Puck, fracture occurs in a plane that is parallel to the fiber ori-
entation and defined by a fracture plane angle, θfp, as depicted in Fig. 5.2, left.
The fracture plane is perpendicular to the laminate plane (i.e. θfp = 0) in the case
of combined transverse tensile stresses and in-plane shear (mode A) or moderate
transverse compression with in-plane shear (mode B). For combinations of high
transverse compressive stresses with shear, the fracture plane angle is non-zero
(mode C) and can be computed analytically [17,20,23]. For example, uniaxial trans-
verse compression of epoxy matrix composites typically leads to a predicted fracture
plane angle of approximately θfp = 50◦−56◦, which agrees well with experimental
findings [3,17,20] and results of micromechanical models [9]. In light of the consid-
erations put forth above, the plasticity law is formulated with respect to the predicted
fracture plane.

5.2.1 Plastic Strain for θθθ fp === 0 (Puck Modes A and B)

In a perpendicular plane, θfp = 0, the only shear stress component under plane
stress conditions is σ12. The relation of shear stress and plastic shear strain for in-
plane simple shear, γ pl

12 (σ12,σ22 = 0), can be derived from experimental data and
described by any suitable analytical expression. Here, a power law,

γ12 = γ el
12 + γ pl

12 =
σ12

G12
+
(σ12

k

)n
(5.1)

θ fp
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Fig. 5.2 Definition of fracture plane and corresponding coordinate system, l-n-t, with regard to the
ply coordinate system, 1-2-3, by fracture plane angle, θfp (left); tractions on the fracture plane for
θfp �= 0 (right)
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with plasticity parameters, k and n, is used which has been found to yield a good
description of the non-linear response of a UD laminate under in-plane simple shear.

It has been previously reported in the literature that experimental tests typi-
cally show an influence of transverse tensile stress on the non-linear shear response
[17, 19, 20]. In order to reflect this effect, a linear influence of transverse normal
stress by a factor µpl

12 is assumed leading to an equivalent shear stress, σ eq
12 , given by

σ eq
12 = |σ12|+ µpl

12σ22 (5.2)

The plastic shear strain for perpendicular fracture planes (mode A or mode B
stress states) under combined shear and normal stresses is then computed from the
equivalent stress by employing the relation in Eq. (5.1) as

γpl
12 (σ12,σ22 �= 0) =

(
σ eq

12

k

)n

(5.3)

5.2.2 Plastic Strain for θθθ fp � � �=== 000 (Puck Mode C)

If the fracture plane is inclined at an angle θfp �= 0, the traction vector of the fracture
plane, σfp, in general, has two shear components,σnl and σnt (see Fig. 5.2, right). For
plane stress states, the component σnl is related to in-plane shear, σ12, whereas σnt
is the result of in-plane transverse compressive stresses, σ22. Assuming transversely
isotropic symmetry of the ply material, the material response due to shear stress
in fiber direction, σnl, is the same as that for in-plane shear. Therefore, the same
influence of normal stress given in Eq. (5.2) can be applied to the inclined fracture
plane as

σ eq
nl = |σnl|+ µpl

12σnn (5.4)

A similar relation is assumed for the transverse shear component, σnt, but with a
different influence factor, µpl

23, to account for the different effect of the layer’s micro-
geometry in the direction transverse to the fibers which yields

σ eq
nt = |σnt|+ µpl

23σnn (5.5)

To account for the interaction of the two shear components, the plasticity law given
in Eq. (5.3) is applied to the total shear stress of the fracture plane, σnψ , analogously
to Eqs. (5.2) and (5.3) as

σ eq
nψ =

∣∣σnψ
∣∣+ µpl

nψσnn and γpl
nψ =

(
σ eq

nψ

k

)n

(5.6)

where σnψ =
√
σ2

nl +σ
2
nt is the projection of the traction vector, σfp, onto the

fracture plane (Fig. 5.2, right), ψ is the angle between the directions of σnt and
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σnψ , and µpl
nψ is interpolated from µpl

12 and µpl
23 as

µpl
nψ = µpl

12sin2(ψ)+ µpl
23cos2(ψ) (5.7)

The general form of the plasticity law is assumed to be the same for all combinations
of fracture plane shear stresses, so n and k of Eq. (5.6) are the same as in Eqs. (5.1)
and (5.3).

To compute the plastic strain tensor in ply coordinates, the plastic strain γ pl
nψ is

split into its two components and the plastic strain tensor referenced to the inclined
fracture plane, ε̄εεpl = (0,0,0,γ pl

nl ,0,γ pl
nt )

T (in Nye-notation), is transformed to ply

coordinates. Since the value of γ pl
nt is generally non-zero for inclined fracture planes,

the transformation leads to plastic normal strains, εpl
22 and εpl

33 = −εpl
22, as well as

out-of-plane shear strains, γ pl
23 . The latter, however, cancel each other out if an equal

accumulation of plastic shear strains γ pl
nt in planes oriented at +θfp and −θfp is

assumed.
Finally, the plastic strain tensor in ply coordinates is given by

εεεpl =

{
(0,0,0,γ pl

12 ,0,0)T mode A,B

(0,εpl
22,ε

pl
33 ,γpl

12,0,0)T mode C
(5.8)

5.2.3 Identification of Parameters for the Plasticity Model

There are four parameters which need to be identified in order to fully define the
plasticity model described above, i.e. n and k for the plasticity law under in-plane
simple shear (Eq. 5.1), as well as µpl

12 and µpl
23 for the influence of normal stress

(Eqs. 5.2 and 5.5, respectively). To identify these parameters it is convenient to use
data from tests on UD laminates because then all non-linearity is related to plasticity,
according to the model assumptions.

The plasticity parameters, n and k, can be derived from experimental data of
shear tests on a UD laminate following Eq. (5.1). Ideally, n and k are determined by
curve fitting if the shear stress–shear strain curve is known. If the complete stress–
strain data is not available for a given ply material, approximations can be obtained
by choosing n in the range of n = 5−7 and computing k from the stress and strain
values at failure. As an example, the shear stress vs. plastic shear strain curve for a
glass fiber/epoxy material (see Table 5.1 for material data) is shown in Fig. 5.3, left,
using experimental data of a test on a hoop wound tube taken from [11]. The best fit
using Eq. (5.1) is obtained with parameters n = 7.2 and k = 120.7 MPa (solid line).
As indicated by the dashed line for the lowest suggested value of n = 5 (resulting
in k = 150.6 MPa), a lower value of n only affects the curvature of the graph but
passes through the same end point and still yields reasonable agreement with the
experimental data.
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Table 5.1 Material data [11, 26] and parameters for the damage/plasticity model of glass fiber/
epoxy UD-layer E-glass/MY750 [18]

Elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

(GPa) (GPa) (GPa)
45.6 16.2 5.5 0.278 0.4

Strength data

R11 R22 R12 p12 p23

(MPa) (MPa) (MPa)
tension ()t 1280 40 73 0.3a 0.3a

compression ()c 520 145 73 0.25a 0.206a

Damage and plasticity parameters

κ en ξ sat µD n k µpl
12 µpl

23

0.05 0.0144 0.2 11 7.2 120.7 MPa 0.25 0.2

a Following Puck’s guidelines for glass fiber materials
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compression (right) (Experimental data from [11, 26])

Once the relation for simple shear is known, µpl
23 can be computed from the failure

stress and strain under uniaxial transverse compression based on Eqs. (5.5), (5.6),
and (5.7). The transverse compression curve for the glass fiber/epoxy material is
shown in Fig. 5.3, right, displaying experimental data [26] and model results for both
curve fits n = 7.2 and n = 5 leading to µpl

23 = 0.197 and µpl
23 = 0.282, respectively.

The factor µpl
12 for the influence of transverse stresses on γ12 (or γnl) should be

derived from experimental data of tests with various stress ratios σ22/σ12. Since
this data is often unavailable, a method to estimate µpl

12 (and µpl
23) is suggested here.

It has been found that typical values for µpl
23 are similar to the values of the slope

parameter pc
23 used in Puck’s failure criterion to account for the shear-strengthening

effect due to transverse compression [17, 20, 23]. Assuming that the influence of
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transverse normal stress on shear regarding failure and plasticity is a result of similar
mechanisms, it is suggested to estimate µpl

12 and µpl
23 as the corresponding values of

slope parameters of the Puck criterion µpl
12 = pc

12 and µpl
23 = pc

23 when experimental
data is not available. Guidelines for the choice of pc

12 and pc
23 are given in [18]. For

the glass fiber/epoxy material, the values obtained using Puck’s recommendation
amount to µpl

12 = pc
12 = 0.3 and µpl

23 = pc
23 = 0.206.

The predicted effect of additional transverse normal stress on the shear stress–
shear strain relation of a UD laminate based on the values identified for the glass
fiber/epoxy material is shown in Fig. 5.4. Since a UD laminate is considered, the
curves terminate at FPF predicted by the Puck criterion. All stress ratios shown in
this figure result in a perpendicular fracture plane (mode A or B). Therefore, the
influence of transverse stress is a result of the chosen value of µpl

12, only (for µpl
12 = 0

there would be no effect of transverse stresses on the plastic behavior). Qualitatively,
the predictions shown in Fig. 5.4 are consistent with trends reported in the literature
for other materials [17, 19, 20].

5.2.4 Lamina Response for Mode C

The interaction of non-linearities due to transverse compression and in-plane shear
in UD laminates has been studied in [30] for the material AS4/PEEK (see material
data in Table 5.2). Experimental data from this study for radial loading paths of
various stress ratios, σ22/σ12, are shown in Figs. 5.5 and 5.6 in comparison to pre-
dictions of the proposed plasticity model. The parameters for the plasticity model
are identified as outlined in Sect. 5.2.3. Parameters for Eq. (5.1) are determined from
the test data of simple shear as n = 6.25 and k = 144 MPa. The value of µpl

23 is
computed from the FPF stress and strain under uniaxial transverse compression as
µpl

23 = 0.322. Since there is only little difference between the simple shear curve and
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Table 5.2 Material data and parameters for the plasticity model of AS4/PEEK UD-layer [30]

Elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

(GPa) (GPa) (GPa)
130 11.2 5.3 0.306 0.48

Strength data

R11 R22 R12 p12 p23

(MPa) (MPa) (MPa)
tension ()t 2,100 80 79.5 0.35a 0.35a

compression ()c 1,100 241.3 79.5 0.25a 0.3a

Plasticity law parameters

n k µpl
12 µpl

23

6.25 144 MPa 0.05 0.322
a Following Puck’s guidelines for carbon fiber materials [18]
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Fig. 5.5 Non-linear shear response for AS4/PEEK UD laminates under various stress ratios
σ22/σ12 (Experimental data from [30] (left); model prediction (right))

the one for stress ratio σ22/σ12 = −0.98 (Fig. 5.5, left), it can be inferred that the
value of µpl

12 has to be rather small. Its value is chosen as µpl
12 = 0.05 which gives

good correlation between predictions of the plasticity model and experimental data
for the shear stress–shear strain curve of stress ratio σ22/σ12 = −0.98.

According to the proposed plasticity model, all stress ratios of the given test
cases, except for the simple shear case, correspond to inclined fracture planes. For
this reason, the σ22 – ε22 relation is predicted to be non-linear in all test cases and the
additional in-plane shear stress has an influence on the non-linearity (see Fig. 5.6,
right). If one of the stress ratios had led to a perpendicular fracture plane (mode B),
the σ22 – ε22 relation would be linear according to the proposed plasticity model,
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irrespective of the amount of superimposed shear stress, and the stress ratio would
only have an effect on compressive strength.

The overall correlation of experimental data and model predictions is very good,
especially for the influence of shear stresses on the transverse compressive behavior
(Fig. 5.6). The effect of compression on shear behavior (Fig. 5.5) is captured quali-
tatively. For stress ratio λ = −0.98, strength and onset of non-linearity are shifted
to higher stresses. With further increase of compression, this trend is reversed and
the curves shift to lower stresses. Quantitatively, the correlation between model and
experiments is good for test cases λ = −0.98 and λ = −7.17. For stress ratios
λ = −1.96 and λ = −2.94 the plastic shear strains at failure are underestimated by
37% and 31%, respectively. The prediction of failure stresses, on the other hand, is
excellent for all load cases considered.

5.3 Combination with Damage Model

If a ply is embedded in a laminate, the first crack does not cause immediate laminate
failure. Therefore, non-linearity in a multi-axial laminate can have two contribu-
tions: plasticity and damage. To model the stiffness degradation of an embedded
ply due to progressive damage in addition to the accumulation of plastic strains,
the plasticity model is combined with a damage model previously proposed by the
authors [22, 24, 25]. The relation between layer stresses, σσσ , and total strains, εεε , for
the combined damage/plasticity model is expressed by the equation

σσσ = EEEd
(
εεε− εεεpl

)
(5.9)

where εεεpl is the plastic strain tensor as defined by the plasticity model and EEEd is
the elasticity tensor of a damaged layer reflecting the material degradation due to
damage. Both of these tensors can contribute to the non-linear behavior.
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The elasticity tensor EEEd is predicted by the damage model as follows. First, the
ply stress state is evaluated by the factor of effort, fE, which is defined from

σσσFPF fE = σσσ (5.10)

where σσσ is the given stress state and σσσFPF is the corresponding failure stress state
determined from the Puck 2D failure criterion. The amount of damage in a compos-
ite ply is quantified by a scalar damage state variable, ξ , and is related to the factor
of effort by an evolution law of the form

ξ
ξ sat =

⎧⎪⎨⎪⎩
0 for fE ≤ 1

1 +κ
1− exp− ( fE(1 +κ)−1)2

2κ2 for fE ≥ 1
1 +κ

(5.11)

with damage evolution parameter κ . The maximum amount of damage that can be
reached in a ply is given by the damage state variable at saturation, ξ sat, which is
typically set to ξ sat = 0.2. The general shape of the evolution law function is chosen
based on experimental observations regarding the increasing crack density with load
(e.g. [15,20]). The evolution parameter κ determines the damage onset load and how
quickly damage progresses with an increase of load. Typical values are in the range
of κ = 0.01−0.05 such that damage onset, given by f onset

E = 1
1+κ , occurs close to the

FPF load. For κ→ 0, the evolution law converges to the step function, i.e. the dam-
age state grows from zero to the final damage state, ξ = ξ sat, instantly at FPF. Note
that unlike the originally proposed damage model, the combined damage/plasticity
model uses a constant evolution parameter κ = κ22 that is independent of the stress
state [22, 24].

The elasticity tensor EEEd for a given damage state, ξ , is computed by the Mori-
Tanaka approach [14] using penny-shaped inclusions aligned with the fracture plane
predicted by Puck 2D and having a constant aspect ratio en. Note that the inclusions
are not intended to model actual cracks in the material, rather they are used to derive
a full triaxial elasticity tensor of the damaged material in a thermodynamically con-
sistent way. This way, the anisotropic effect of damage is captured qualitatively,
while quantification is provided by parameter identification from experimental data
as described in [24]. The material properties assigned to the inclusions depend on
the stress state. If the normal stress on the corresponding fracture plane, σnn, is ten-
sile such that cracks would be open, the inclusions become voids with zero stiffness.
For compressive normal stress, the inclusions’ properties are the same as those of
the initial (undamaged) ply material except for reduced shear moduli in the fracture
plane, Gincl

nl and Gincl
nt . These are computed as

Gincl
nl = Gincl

nt = µD|σnn| (5.12)

where the factor µD is a material parameter accounting for shear stiffness recovery
attributed to frictional forces at the crack faces. For a detailed discussion of the
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damage model assumptions, the exact formulation of the constitutive equations as
well as identification procedures for the model parameters see [22, 24, 25].

5.4 Laminate Behavior

In order to apply the combined damage/plasticity model to the analysis of multi-
directional laminates, the model is implemented in combination with classical
lamination theory extended for plastic strains (e.g. [5]). In the following, model
predictions are compared to experimental data to assess the model’s capabilities of
capturing laminate behavior under various loading conditions.

5.4.1 Influence of Curing Stresses on Shear Behavior

In this section, the combined damage/plasticity model is used to investigate the
effect of curing stresses on the shear response derived from two different experi-
mental test methods reported in [11]. One method is a torsion test of a hoop-wound
tube which yields the shear stress–shear strain relation of a UD laminate under in-
plane simple shear. The other method is to derive the non-linear shear response via
lamination theory from tests on ±45 laminates under stress ratio σxx/σyy = −1
leading to in-plane simple shear in each layer. Since the individual plies experience
only shear stresses in both experiments, there should be no difference between the
non-linear shear responses derived by either test method. Both of these methods
were used in [11] to determine the shear response of the glass fiber/epoxy mate-
rial E-glass/MY750 (see Table 5.1). The experimental results are shown in Fig. 5.7
denoted as ‘exp. UD’ and ‘exp. laminate’. One difference between the two curves
is related to the fracture process. Fracture of the UD specimen is the result of a
single matrix crack, while a laminate can continue to carry load well after the indi-
vidual plies have cracked. But also prior to cracking, the non-linear behavior is not
the same as the curves from the laminate tests exhibit significantly higher strains
beyond σ12 ≈ 40 MPa. A possible explanation for this discrepancy are residual cur-
ing stresses due to the production process which are expected to exist in the ±45
laminate but not in the UD specimens.

The results of analyses employing the proposed damage/plasticity model are also
displayed in Fig. 5.7. Damage parameters for the glass fiber/epoxy material have
been identified previously in [24] and are listed with the other material data in
Table 5.1. The non-linearity predicted for a UD laminate is caused by plasticity
only and the corresponding curve is labeled as ‘model UD’ in Fig. 5.7. It is a perfect
fit to the corresponding experimental curve, since the experimental data is the same
as that used for parameter identification in Fig. 5.3, left. The curve predicted for the
biaxial laminate test without consideration of residual stresses (‘model laminate’)
also follows the same curve up to the onset of damage and then continues with an
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almost horizontal tangent as damage is increasing in addition to further accumula-
tion of plastic strain. To account for curing stresses in the simulation of the laminate
test, a temperature change of ∆T = −150 K from a stress-free state is prescribed.
The result of this analysis is shown by a thick solid line in Fig. 5.7. It can be seen
that the effect of residual stresses predicted by the combined model for the laminate
test leads to a similar change in shear response as observed in the experiments. Note
that the effect of fiber rotation related to the high amount of shear strain is not taken
into account in the model. This potentially leads to the higher tangent stiffness in
the experimental data compared to model predictions at higher strain.

The same comparison has also been performed previously using the original for-
mulation of the damage model without taking shear plasticity into account [22].
There, it was found that the discrepancy between the two test methods cannot be
explained if non-linearity is attributed only to brittle damage since residual stresses
are released due to the stiffness degradation when damage starts to develop. Con-
sequently, the results of the combined damage/plasticity model shown in Fig. 5.7
represent a significant improvement over predictions of the original brittle damage
model.

5.4.2 Accumulation of Plastic Strain

To study the accumulation of plastic strain under shear dominated loading, a series
of uniaxial tensile tests on symmetric angle ply laminates, (±β )2s, with vary-
ing layup-angle, β , has been carried out (experimental data courtesy of PCCL –
Polymer Competence Center Leoben, Austria). The tests were conducted on flat
coupons of carbon fiber/epoxy with a nominal cross-sectional area A = 25 mm2
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Table 5.3 Material data and parameters for the damage/plasticity model of a carbon fiber/epoxy
UD-layer [18]

Elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

(GPa) (GPa) (GPa)
140 8.5 4.5 0.35 0.4

Strength data

R11 R22 R12 p12 p23

(MPa) (MPa) (MPa)
tension ()t 2,376 60 108 0.35a 0.35a

compression ()c 1,420 200b 108 0.3a 0.23a

Damage and plasticity law parameters

κ en ξ sat µD n k µpl
12 µpl

23

0.01 0.012 0.2 15 5.88 145.6 MPa 0.3 0.23

a Following Puck’s guidelines for carbon fiber materials
b Estimated value

(see Table 5.3 for material data). During some tests, several unload/reload loops
were performed to investigate the amount of accumulated residual strain. Experi-
mental results for laminates with angles β = 25◦,45◦,55◦, and 65◦ are shown in
Fig. 5.8, with ‘exp.stat’ denoting monotonic loading and ‘exp.loop’ denoting tests
with unload/reload loops. These four layup angles give rise to ply stress ratios
σ22/σ12 = −0.88, 0.15, 0.76, and 1.6, respectively, for the linear elastic range.

Predictions by the combined damage/plasticity model for these tests including
unloading paths are also shown in Fig. 5.8. The damage parameters for the model
are chosen the same as those of a comparable material that has been identified pre-
viously [22,25] (see Table 5.3). It is noted, however, that the progression of damage
plays a minor role in most of the test cases shown here since damage onset under
shear dominated loads occurs very late in the loading history.

Due to the lack of experimental data on the shear behavior of UD specimens,
the shear plasticity parameters are deduced from data of the monotonic test of a
±45 laminate. For this layup, the ply stress state is close to in-plane simple shear
(σ22/σ12 = 0.15 in the linear elastic range). Since data on the compressive response
and the influence of transverse normal stresses on the shear response is also not
available, the influence parameters for normal stresses are chosen as suggested in
Sect. 5.2.3 as µpl

12 = pc
12 = 0.3 and µpl

23 = pc
23 = 0.23. It is noted that effects of

curing stresses, fiber rotation due to large shear strains, and increased strength of
thin plies (in-situ effect, see e.g. [7]) are not accounted for in the present analyses.
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Fig. 5.8 Experimental results and model predictions of axial force–strain plots of tensile tests on
various angle-ply laminates including unload/reload loops (cross-sectional area of coupons A =
25 mm2 (Experimental data courtesy of PCCL, Leoben))

As the results in Fig. 5.8 indicate, the agreement between model predictions and
experiments, in general, is quite satisfactory for all four laminates regarding the
non-linear response as well as accumulated residual strain.

In the ±25 laminate (Fig. 5.8, top left), the induced ply stress state leads to an
inclined fracture plane (mode C). The predicted fracture plane angle starts out at
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θfp = 33◦ and increases with the accumulation of plastic strain and damage to reach
θfp = 43◦ at failure. Due to the model formulation, the plastic strain tensor and
the elasticity tensor of a damaged ply implicitly depend on the fracture plane angle.
In the current implementation, the fracture plane angle corresponding to a given load
increment is used for computing the plastic strain tensor and the elasticity tensor at
that load. Although this is not strictly correct, the error is expected to be small for
this example since the initial fracture plane angle of θfp = 33◦ is already relatively
large.

Prior to damage onset, the unloading path follows the initial axial stiffness of
the laminate, which correlates fairly well with the experimental data. Note that
the load of damage onset and ultimate failure predicted for the ±25 laminate is
predominantly influenced by the transverse compressive strength Rc

22, which was
not available for this material. Typical values for carbon fiber/epoxy materials are
on the order of Rc

22 = 200−250 MPa. In Fig. 5.8, top left, an estimated value of
Rc

22 = 200 MPa is used. A higher compressive strength would shift the damage onset
and ultimate failure stresses to higher values but it would have little influence on
the non-linear behavior below damage onset. The choice of Rc

22 does not have any
influence on the predicted behavior of the other layups considered here.

The monotonic test of a ±45 laminate (Fig. 5.8, top right) is used for identifi-
cation of the plasticity parameters. Therefore, the model prediction is a perfect fit
to this curve below damage onset which occurs at Fx = 4.93 kN (i.e. 1% below
the FPF stress due to the chosen value of κ = 0.01). After the onset of damage,
the predicted curve is lower than the experimental ones. This is most likely due to
the neglected stiffening effect of fiber rotation and the fact that the ±45 laminate
test was used to identify the plasticity parameters rather than a test of a UD lami-
nate. While plastic strains continue to increase after damage onset, the accumulation
of damage additionally leads to a degradation of the axial stiffness. Fairly good
agreement is found by comparing the predicted unloading paths to the experimen-
tal unload/reload loops with only a small underestimation of stiffness degradation
by the model. It seems that a small reduction of stiffness occurs in the experiments
already at the start of loading. However, most of the non-linearity prior to FPF is
related to residual strains as it is assumed in the proposed model.

Similar observations can be made for the ±55 laminate (Fig. 5.8, bottom left).
The overall agreement between model and experiments is good, showing only a
slight underestimation of stiffness degradation. It is interesting to note that strain
softening can be observed in the experimental data of the monotonic test. The
source of this effect is not clear but it is conceivable that additional failure mecha-
nisms, such as delamination between the laminate layers, come into play which are
not included in the present model. The tests with unloading/reloading loops were
terminated before a reduction of force was noticed.

In the ±65 laminate tests (Fig. 5.8, bottom right), the ratio of transverse normal
stress over shear stress is the highest of all tests considered here (σ22/σ12 = 1.6).
Consequently, only a minor amount of non-linearity is observed in the experiments
which is also predicted correctly by the model. Although the experimental data
is not that clear since the non-linearity is very small, it seems that most of the
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non-linearity is related to residual strains. All specimens tested fail very abruptly
at a stress of approximately 100 MPa. Subsequent inspection of the specimens led
to the conclusion that the onset of damage in one ply instantly triggers fiber failure
in the neighboring plies due to a concentration of shear stresses at the location of the
matrix crack. Therefore, the onset of damage in the model should be considered as
ultimate failure in this case. However, the predicted FPF load is significantly lower
than the laminate failure load in the experimental tests. The reason for this discrep-
ancy is most likely a result of a higher tensile strength due to the ‘in situ’ effect [7].
If the FPF strength for transverse tension is increased to Rt

22 = 100 MPa such that
the predicted failure load agrees with the experimental data, the amount of plastic
strain predicted by the simulation shows very good agreement with the experiment.

The effect that a higher transverse tensile strength has on the predicted response
of the ±55 laminate is shown in Fig. 5.8, bottom left, by the dash-dotted line. For the
other two laminates, there would be almost no change due to the increased tensile
strength in the case of the ±45 and no change for the ±25 layup according to the
proposed model.

5.5 Conclusions

In the present work, a model combining elastic brittle damage mechanics with
plasticity is presented to predict the non-linear load response of fiber reinforced
polymer laminates under plane stress states. Although continuum damage mechan-
ics is typically used to model non-linearity of laminate plies, it has been found that
not all of the non-linear effects observed experimentally can be explained by brit-
tle damage. For example, it is reported in the literature that residual strains occur
in experiments under shear-dominated loading conditions. To capture these strains,
a formulation for plastic shear strains is proposed and combined with a damage
model developed previously by the authors. The combined damage/plasticity model
is able to capture the non-linear ply behavior accounting for stiffness degradation
due to matrix cracking as well as residual strains caused by plastic shear deforma-
tion. Comparisons to experimental data show that taking plastic shear strains into
account leads to significant improvements in the predictive capabilities. Addition-
ally, the combined model reflects the accumulation of residual strains, the non-linear
response observed in uniaxial transverse compression tests, and the influence of
transverse normal stress on the non-linear shear behavior. This influence of trans-
verse stress, furthermore, is able to explain discrepancies between the shear behavior
derived from tests on a UD laminate compared to biaxial tests on a multi-directional
laminate attributed to residual curing stresses. Another advantage of the proposed
model is the relatively small amount of material parameters. The identification of
parameters for the plasticity model by standard test methods is also discussed in
this work.
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Chapter 6
Study of Delamination in Composites by Using
the Serial/Parallel Mixing Theory
and a Damage Formulation

Xavier Martı́nez, Sergio Oller, and Ever Barbero

Abstract This work presents a new procedure to deal with the delamination prob-
lem found in laminated composites, based in a continuum mechanics formulation.
The procedure proposed obtains the composite constitutive performance with the
Serial/Parallel mixing theory, developed by F. Rastellini. This theory character-
izes composite materials by coupling the constitutive behaviour of the composite
components, imposing an iso–strain relation among the components in the fibre (or
parallel) direction and an iso–stress relation in the remaining directions (serial direc-
tions). The proposed procedure also uses a damage formulation to characterize the
constitutive behaviour of matrix component in order to obtain the stress–strain per-
formance of this material.

With these two formulations, the delamination phenomenon is characterized
naturally by the numerical simulation, being unnecessary the definition of special
elements or computationally expensive techniques like the definition of contact ele-
ments or mesh separation. Matrix failure, as a result of the stress state found in
it, leads to a reduction of the stiffness and strength capacity of the composite in
its serial direction. This reduction provides a composite performance equivalent to
what is found in a delaminated material.

To prove the ability of the formulation proposed to solve delamination problems,
the End Notch Failure test is numerically simulated and the results obtained are
compared with experimental ones. The agreement found in the results with both sim-
ulations, numerical and experimental, validate the proposed methodology to solve
the delamination problem.
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6.1 Introduction

The use of new materials in structural applications implies dealing with new failure
processes, not existing in traditional materials. One of these is the delamination
phenomenon found in laminated composites. The lost of adherence between the
different layers of the composite leads to a reduction of the section strength and
stiffness that can finish in a structural failure.

The importance of this phenomenon is demonstrated by the amount of authors
that have developed theories and formulations to deal with it. All authors that have
studied the problem agree that the delamination process is characterized by two
main phenomenons, the crack initiation and its propagation along the composite.
Crack initiation can be obtained by comparing the strain–stress state of the material,
in the region where delamination takes place, with a critical one [1, 4, 6, 15] or in
terms of the traction versus relative displacement [2, 3, 12]. And the delamination
propagation is usually treated opening the mesh to simulate the crack effect where it
takes place. To open the mesh different procedures are proposed. One of them is the
virtual crack closure technique (VCCT) [8], based on the assumption that when a
crack is extended, the energy required to open the crack is the same required to close
it. Another procedure, each time more used, is the use of a cohesive zone model [4].
The cohesion elements are placed in the interface of the layers that can suffer delam-
ination and its propagation is obtained with damage or plastic formulations applied
to those elements.

Besides the differences in the existing formulations found in literature to simu-
late the delamination phenomenon, all of them agree in dividing the mesh where the
crack is developed. This procedure is computationally very expensive, as it requires
contact formulations to avoid the interpenetration of one body into the other. And,
also, all of them require an special formulation where the delamination will occur,
with interface elements [1], cohesive zones [2] or with coincident nodes, not con-
nected to allow the mesh opening, as it is done with the VCCT [8]. In contrast to
the scope used by these authors to solve the delamination problem, this work uses
the continuum mechanics to simulate the delamination initiation and propagation,
without making any distinction of the elements in which delamination takes place.

In this work, the Serial/Parallel (S/P) mixing theory developed by Rastellini [13],
is used to obtain the composite performance and to simulate the delamination pro-
cess. This theory is based on the definition of some compatibility equations between
the strain–stress states of the composite constituent materials. In the case of a com-
posite made of fibre and matrix, what the Serial/Parallel mixing theory does is to
impose an iso–strain condition on the parallel direction, usually the fibre direction,
and a iso–stress condition on the serial direction, usually the remaining directions
of the stress and strain tensors. With this scope, if the matrix structural capacity is
lost, the S/P mixing theory will reduce the structural capacity of fibre material in
the serial directions due to the iso–stress condition. Thus, it will be impossible for
the composite layer to develop shear or transversal stresses, less to transmit them to
the surroundings elements. The structural performance of a material in which serial
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stresses are zero is similar, as it will be proved in this work, to the performance
shown by a delaminated material.

To obtain this structural behaviour, the matrix material has to loose its strength for
a certain stress state. This lost of strength must be permanent in order to simulate the
real crack produced by delamination in the material. This is achieved with a damage
formulation based on the fracture energy of the material.

A detailed description of the different formulations required to simulate the
delamination process: the S/P mixing theory and the damage formulation used in
matrix material, are described in the following section. Afterwards, to prove the
validity of the scope used to simulate the delamination phenomenon, as well as the
ability of the formulations proposed to simulate it, this work compares the results
obtained from the experimental test made to obtain the mode II fracture energy of a
composite with the results obtained from a numerical simulation of the same model.
The experimental test is the End Notch Flexure (ENF) test defined by the Euro-
pean Structural Integrity Society (ESIS). The agreement between experimental and
numerical results will prove the ability of the S/P mixing theory, together with the
damage formulation used, to simulate delamination processes.

6.2 Formulation

The formulation shown in this work to simulate the delamination effect in com-
posite materials made of laminates of fibre reinforced polymers is the following
one: The composite behaviour is obtained from its constituent materials with the
serial/parallel mixing theory developed by Rastellini [13]. This theory is described
in Sect. 6.2.1. To obtain a good convergence ratio in the process and, in most cases,
to be able to obtain convergence, it is necessary to use a tangent constitutive ten-
sor. This tensor can be obtained analytically for some constitutive equations but not
for the damage formulation used in the presented simulation. To solve this prob-
lem, the tangent constitutive tensor is obtained performing a numerical derivation
with a perturbation method. This methodology is exposed in Sect. 6.2.2. Finally, the
delamination process is obtained as a lost of strength and stiffness in matrix mate-
rial. This effect is characterized using a damage formulation, which is described in
Sect. 6.2.3.

6.2.1 Serial/Parallel Mixing Theory

The serial/parallel mixing theory considers that in a certain direction (or directions)
the compounding materials behave in parallel, while their behaviour is serial in the
remaining directions. For this reason it is necessary to define, and split, the serial and
parallel parts of the strain and stress tensors. This is done with two complementary
fourth order projector tensors, one corresponding to the serial direction (PS) and the
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other to the parallel direction (PP). These tensors are defined from the fibre axial
direction in the composite. Thus,

εεε = εP + εS

with εP = PP : εεε and εS = PS : εεε
(6.1)

where,

NP = e1 ⊗ e1; PP = NP ⊗NP and PS = I −PP (6.2)

Being e1, the director vector that determines the parallel behaviour (fibre direc-
tion), and I the identity. The stress state may be split analogously, finding its parallel
and serial parts using also the fourth order tensors PP and PS:

σσσ = σP +σS

with σP = PP : σσσ and σS = PS : σσσ
(6.3)

6.2.1.1 Hypothesis for the Numerical Modeling

The numerical model developed to take into account this strain-stress state is based
on the following hypothesis:

1. The composite is composed by only two components: fibre and matrix.
2. Component materials have the same strain in parallel (fibre) direction.
3. Component materials have the same stress in serial direction.
4. Composite material response is in direct relation with the volume fractions of

compounding materials.
5. Homogeneous distribution of phases is considered in the composite.
6. Perfect bonding between components is also considered.

6.2.1.2 Constitutive Equations of Component Materials

Each composite component material is computed with its own constitutive equa-
tion. However, since the materials will be modeled with a damage formulation, the
description of the formulation is done considering the particular case of isotropic
damage. So, the stresses in matrix and fibre materials are obtained using:

mσσσ = (1−md) · mC : mεεε
fσσσ = (1− f d) · f C : f εεε

(6.4)

being mC and f C the matrix and fibre stiffness tensors, respectively.
These equations can be rewritten taking into account the serial and parallel split

of strain and stress tensors (Eqs. 6.1 and 6.3), obtaining:
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iσP
iσS

]
= (1− id) ·

[
iCPP

iCPS
iCSP

iCSS

]
:

[
iεP
iεS

]
(6.5)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
iCPP = PP : iC : PP
iCPS = PP : iC : PS
iCSP = PS : iC : PP
iCSS = PS : iC : PS

with i = m, f (6.6)

6.2.1.3 Equilibrium and Compatibility Equations

The equations that define the stress equilibrium and establish the stain compatibility
between components arise from the analysis of the hypotheses previously exposed,

Parallel behaviour: cεP = mεP = f εP
cσP = mkmσP + f k fσP

(6.7)

Serial behaviour: cεS = mkmεS + f k f εS
cσS = mσS = fσS

(6.8)

where superscripts c, m and f stand for composite, matrix and fibre, respectively
and ik corresponds to the volume fraction coefficient of each constituent in the
composite.

6.2.1.4 Serial/parallel Rule of Mixtures Algorithm

The known variable that enters the algorithm is the strain state cε of the compos-
ite material at time t +∆ t. From this variable, the serial/parallel rule of mixtures
algorithm has to find the strain and stress state of each component that fulfils the
equilibrium, the compatibility and the constitutive equations and the evolution of
the internal variables.

The first thing done by the algorithm is to split the strain tensor into its parallel
and its serial parts, in order to compute the strain state in the matrix and the fibre.
The parallel strain component is, according to Eq. (6.7), the same for both materials
and for the composite. On the other hand, the serial strain component requires a pre-
diction of the strains expected in one of the composite components. If this prediction
is done for the matrix, the increment of its serial strains can be computed as

[m∆εS]
0 = A :

[
f CSS : c∆εS +

f k
(

f CSP −mCSP
)

: c∆εP
] (6.9)

with A =
(

mk f CSS + f kmCSS
)−1

and m∆εS = t+∆ t [cεS]− t [cεS].
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The initial prediction of matrix serial strains, proposed by Rastellini [13] and
described in Eq. (6.1), is obtained considering that the distribution of the total strain,
in its parallel and serial parts, is done in function of the composite tangent stiffness
obtained in previous time step. With the prediction of the matrix serial strains, the
fibre serial strains can be computed, in the iteration step n, according to Eq. (6.8),

t+∆ t [ f∆εS
]n

=
1
f k

t+∆ t [cεS]−
mk
f k

t+∆ t [mεS]
n (6.10)

where t+∆ t [mεS]
n = t [mεS]+ [m∆εS]

n.
Regrouping again the serial and parallel components of the strain tensor (Eq. 6.3),

the constitutive equations can be applied to the predicted strains to obtain the
stress tensor for both materials and the update of their internal variables. Fibre and
matrix are modeled, each one, with their own constitutive law. If both materials are
described with an additive plasticity formulation, the stress vector for each one is
obtained using Eq. (6.4). The stresses obtained must fulfill the following equation:

[∆σS]
n = t+∆ t [mσS]

n − t+∆ t [ fσS
]n ≤ tolerance (6.11)

If the residual stress is smaller than the tolerance, the computed strains and
stresses are considered to be correct and the structural calculation can continue.
However, if Eq. (6.11) is not fulfilled, the initial prediction of the matrix strain
tensor has to be corrected. This correction is performed using a Newton-Raphson
scheme, in which the update is made using the Jacobian of the residual forces. It is
obtained deriving the residue function with respect to the unknown. According to
Rastellini [14], the expression for the Jacobian is given as follows:

J =
∂∆σS

∂mεS

∣∣∣∣
mεS=t+∆t [mεS]n

= [mCSS]
n +

mk
f k

[ f
CSS
]n

(6.12)

and, the correction of the matrix serial strains becomes

t+∆ t [mεS]
n+1 = t+∆ t [mεS]

n −J
−1 : [∆σS]

n (6.13)

To obtain quadratic convergence in the S/P mixing theory, the Jacobian must be
obtained using the tangent constitutive tensors for the fibres and the matrix. Depend-
ing on the constitutive equation defined for each material, the constitutive tensor
cannot be obtained analytically. Thus, in order to obtain a reliable algorithm, the
expression of the tangent tensor is obtained numerically.

6.2.2 Tangent Constitutive Tensor

The tangent constitutive tensor, Ct , is obtained numerically for each component
material of the composite using a perturbation method. The definition of the tangent
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constitutive tensor is,
σ̇σσ = C

t : ε̇εε (6.14)

This definition of the tangent constitutive tensor can be written for isotropic and
orthotropic materials, using the reduction of tensors to their matrix description as:⎡⎢⎢⎣

σ̇1
...
σ̇n

⎤⎥⎥⎦=

⎡⎢⎢⎣
ct

11 . . . ct
1n

...
. . .

...
ct

n1 . . . ct
nn

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
ε̇1
...
ε̇n

⎤⎥⎥⎦ (6.15)

The stress vector rate of Eq. (6.15) can be obtained as the sum of n stress vectors,
resultants from the product of the j component of the strain vector rate by the j
column of the tangent stiffness tensor; this is:

σ̇σσ =
n

∑
j=1

δ ˙jσ =
n

∑
j=1

ccct
j · ε̇ j (6.16)

with,
ccct

j =
[
ct

1 j ct
2 j . . . ct

n j

]T
(6.17)

Thus, the j column of the tangent stiffness tensor, which is unknown, can be
obtained from Eq. (6.16), as:

ccct
j =

˙jσσσ
ε̇ j

≡ δ jσσσ
δε j

(6.18)

The perturbation method consist on defining n small variations, or perturbations,
of the strain vector δε j, to obtain n stress vectors δ jσσσ , that will be used in Eq. (6.18)
to obtain the numerical expression of the tangent constitutive tensor.

6.2.2.1 Numerical Implementation of the Tangent Constitutive Tensor

In a finite element code, the material constitutive law provides the stress tensor
σσσ and the internal variables q associated to a defined strain tensor εεε . With the
strain and stress vectors resulting from the constitutive equation, a small perturba-
tion is applied to the strain vector to obtain its associated stress tensor. The obtained
stresses, together with the perturbation defined, will be used to compute the tangent
constitutive matrix using Eq. (6.18).

In the procedure defined, the smaller the perturbation value is, the better will be
the approximation computed for the tangent constitutive tensor. With this consider-
ation in mind, the perturbation value defined for each component of the strain tensor
is obtained by the following procedure:

if ε j �= 0 → δε j = ε j ·10−5

if ε j = 0 → δε j = min{εk} ·10−5 ∀k = 1,n
(6.19)
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Selecting the perturbation value in this way, the strain increment will be always
small enough to ensure that the stress variation is close to the computed value. How-
ever, this procedure can deal with perturbation values near to zero (i.e. when one of
the strain values is nearly zero). This will lead to an indetermination in Eq. (6.18).
To avoid such a situation, a new condition must be imposed in order to assure a
perturbation value large enough. This condition is

δε j > max{εk} ·10−10 ∀k = 1,n (6.20)

This procedure allows obtaining an accurate approximation to the tangent con-
stitutive tensor for any constitutive law used and any yield surface, ensuring the
convergence of the numerical process.

6.2.3 Isotropic Continuum Damage Formulation

The material degradation in a continuum solid, due to a fracture process, can be sim-
ulated with a damage formulation. This formulation takes into account the reduction
of the effective area of the material by a reduction of its stiffness properties. To sim-
ulate the delamination phenomenon in composites, the formulation that will be used
in this work to predict the constitutive behaviour of matrix material is the isotropic
continuum damage formulation defined by Oller in [10]. This formulation is based
on the theory of continuum damage first developed by Kachanov [7]. In this sec-
tion, the main aspects of the isotropic continuum damage formulation to be used are
exposed.

6.2.3.1 Isotropic Damage Model

A damage process can be simulated, in the context of continuum mechanics, by the
introduction of a material internal variable, MMM, representing the amount of damage
found in it. This variable transforms the real stress tensor, σσσ into an effective stress
tensor σσσ000. This is:

σσσ0 = MMM−1 : σσσ (6.21)

In the case of an isotropic damage, all directions of the stress tensor suffer the
same degradation. This consideration allows defining the damage internal variable
in function of an scalar variable and the damage equation becomes:

σσσ0 = [(1−d)III]−1 : σσσ =
1

(1−d)
σσσ (6.22)

Being d the damage scalar internal variable. Its value is limited by 0 and 1. When
the material is not damaged, the value of the damage variable is 0 while, when the
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material is completely damaged, d = 1. The effective stresses, shown in Eq. (6.22),
correspond to the stresses that would be obtained in the material if it is not
damaged:

σσσ0 = C0 : εεε (6.23)

And the real stress tensor can be obtained, from the strain state of the material,
by coupling Eqs. (6.22) and (6.23).

σσσ = (1−d)σσσ0 = (1−d)C0 : εεε (6.24)

6.2.3.2 Damage Criterion

The damage criterion predicts when the damage process begins to take place in
the material, this is: when the material elastic behaviour is lost as a result of the
degradation. This criterion is used to represent different material behaviours, and it
depends on the stress tensor and on the value of the internal variables found in the
material point under study. Its expression is:

F(σσσ0,qqq) = f (σσσ0)− c(d) ≤ 0 with qqq ≡ {d} (6.25)

where c(d) is a function defining the damage limit value and f (σσσ0) defines the dam-
age surface. Damage will start the first time that f (σσσ0) value is equal or larger than
c(d). Usually, instead of working with Eq. (6.25), the damage criterion is converted
to an equivalent one by using a scalar function G which is positive and with its
derivative positive, monotonously increasing and invertible:

F
∗(σσσ0,d) = G [ f (σσσ0)]−G [c(d)] ≤ 0 (6.26)

The damage surface to be used with this formulation can be any of the existing in
literature (i.e. Von-Mises, Mohr-Coulomb, etc.) and its election will depend on the
material to be modeled. In the present work, the damage surface that will be used
for matrix material corresponds to the one defined by norm of principal stresses,
weighted according to the compression–tension proportion found in the principal
stress tensor. This damage surface can be written as:

f (σσσ0) = ρ · ‖σσσ III‖ (6.27)

being σσσ III the principal stress tensor and ρ the compression–tension weight function,
defined as:

ρ = r0N +(1− r0) (6.28)

where N = σmax
c /σmax

t is the material ratio between the maximum accepted com-
pressive strength/tensile strength. And r0 is a scalar function that defines the relation
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between the compression and the tension state of the stress tensor. This last function
is defined with the following expression:

r0 =
∑3

I=1 < σI >

∑3
I=1 |σI|

(6.29)

with < x > = 0.5 [x + |x|] the McAully function.
The compression–tension weight function has been defined to obtain a damage

surface to be compared with a compression stress. Hence, when using this damage
criterion, the value of c(d) must be referred to compression stresses.

6.2.3.3 Evolution of the Damage Variable: Softening Behaviour

In the mechanical problems where the internal variables appear, it is necessary to
define their evolution law. In the damage problem, the law that defines the evolution
of the damage variable is [10]:

ḋ = µ̇
∂F∗(σσσ0,d)

f (σσσ0)
≡ µ̇

G [ f (σσσ 0)]
f (σσσ0)

(6.30)

being µ a non-negative scalar called damage consistency parameter. This parameter
is used to define the load, unload and reload Kuhn–Tucker conditions:

µ̇ ≥ 0; F
∗(σσσ0,d) ≤ 0; µ̇ ·F∗(σσσ0,d) = 0 (6.31)

The Kuhn–Tucker condition tells that if the damage criterion is lower than zero,
then µ̇ = 0 and there is no damage evolution. And, when the damage criterion is
equal to zero, which means that the stress tensor is on the damage surface, the dam-
age consistency parameter is larger than one and there is damage evolution. Making
use of the consistency condition, Ḟ∗(σσσ0,qqq) = 0, it can be proved [11] that the final
expression of the damage parameter can be defined as:

d = G [ f (σσσ 0)] (6.32)

So, the evolution of the damage parameter depends on how the function G is
defined. Two different definitions of the G function are exposed below. Both of
them correspond to a material with a softening behaviour.

Linear softening: The evolution of the damage parameter, in case of considering
a linear softening, is defined by the following expression of the G function:

d = G [ f (σσσ 0)] =
1− τττ0

f (σσσ 0)
1 + A

(6.33)
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Fig. 6.1 Stress–strain graph obtained with the damage formulation. In (a) is represented a material
with linear softening while (b) shows a material with exponential softening

Exponential softening: This function was first proposed by Oliver et al. [9], to
obtain an exponential softening in the material. The expression of the damage
parameter is:

d = G [ f (σσσ0)] = 1− τττ0

f (σσσ0)
e

A

⎛⎝1−
f (σσσ0)
τττ0

⎞⎠
(6.34)

The parameter A depends of the fracture energy of the material. Its expression is
defined in the following section. And, the value τττ0, corresponds to the limit elastic
stress that can be found in the material. When using the damage surface based on the
norm of the principal stresses, differentiating between the compression and tension
states, the limit stress to be defined is the one corresponding to the compression
case, σmax

c .
Figure 6.1 a shows the stress-strain relation obtained for a material with a linear

softening; and Fig. 6.1b shows the evolution of the same material when an expo-
nential softening is applied to it. In both cases the relation defined between the
compression strength and the tension strength is: N = 2.

6.2.3.4 Parameter A

The parameter A, appearing in Eqs. (6.33) and (6.34), is obtained from the dissipa-
tion equation of the material, considering an uniaxial process under a monotonous
increasing load. The parameter deduction can be obtained from [11] and their
expression is,

Linear softening: A = −1
2

(τττ0)2

gcC0

Exponential softening: A = + 1
gcC0

(τττ0)2 − 1
2

(6.35)
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where C0 is the uniaxial stiffness of the material and gc corresponds to the maxi-
mum energy per unit volume that can dissipate the point under consideration in a
compression case.

Classical fracture mechanics defines the fracture energy of a material as the
energy that has to be dissipated to open a fracture in an unitary area of the material.
This energy is defined as:

G f =
Wf

A f
(6.36)

where Wf is the energy dissipated by the fracture at the end of the process and A f is
the area of the surface fractured. When coupling the fracture mechanics theory with
the continuum mechanics, the relation defined to relate Wf with g f is:

Wf = G f ·A f ≡
∫

Vf

g f dV (6.37)

And the relation between the fracture energy defined as a material property, Gf ,
and the maximum energy per unit volume required by the damage formulation, g f ,
becomes:

g f =
Wf

Vf
=

Wf

A f l f
=

G f

l f
(6.38)

Thus, the fracture energy per unit volume is obtained as the fracture energy
defined for the material divided by the fracture length. This fracture length corre-
sponds to the length, perpendicular to the fracture area, considered to be damaged.
If this theory is applied to a finite element code, in which a continuum formulation
is transformed into a discrete formulation, the fracture will have to be transformed
from the continuum to a discrete space. So, the fracture length will not be zero,
which corresponds to a fracture in a plane, but will have a minimum length size.
This minimum length correspond to consider that the fracture is extended along
the whole gauss point section. Figure 6.2 shows a representation of this fracture
length.

Fig. 6.2 Fracture in a real body and in its finite element discretization. Fracture length description
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6.3 End Notch Flexure (ENF) Test Simulation

To prove the ability of the formulation developed to simulate delamination pro-
cesses, this work shows the numerical result obtained from the simulation of the
End Notch Flexure (ENF) test, defined by the European Structural Integrity Society
(ESIS). This test seeks to obtain the toughness for crack propagation in mode II, cor-
responding to a shear crack, in unidirectional fibre reinforced polymer composites
(FRPC).

The experimental results have been obtained from the tests made by CIMEP
(Centre per a la Innovació en Materials, Estructures i Processos) and the Univerity
of Girona for the project GRINCOMP (ref. MAT2003-09768-C03) [5].

6.3.1 Experimental Test Description

The End Notch Flexure test is based in the flexure of a beam with an initial crack
in one of its ends. The test has been applied to a composite made of carbon fibres
with an epoxi polymeric matrix. Fibres are oriented in the longitudinal direction of
the beam and the initial crack is created introducing an insert in the laminate during
its fabrication. The width of the gap generated by this insert must be smaller than
50 µm. The span of the beam is 100 mm and it is loaded with a concentrated load
at its mid–span. The test is made with a displacement controlled mechanism. Three
different series (GRIN006, GRIN015 and GRIN024), each one containing five dif-
ferent samples, where tested during the experimental campaign. To perform the
numerical simulation, the first sample of serie GRIN006 has been considered (beam
3M101, according to the notation used in the tests). The dimensions of this sample,
as well as the dimensions considered for the numerical simulation, are shown in
Fig. 6.3.

The experimental test applies a vertical displacement to the beam, as shown in
Fig. 6.3, until the initial crack starts its propagation. The imposed displacement is
applied until the crack progression stops and the beam recovers its linear behaviour.
At this point, the sample is unloaded. Main results obtained from this test are
two: The force–displacement graph, which shows the structural performance of the

25.0 mm

24.9 mm

g = 0.05 mm 6.15 mm

50.0 mm 50.0 mm

Fig. 6.3 Sample geometry used for the ENF test
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Table 6.1 Composite components mechanical properties

Matrix properties Fibre Properties

Tensile strength 120.66 MPa Tensile strength 4,278 MPa
Tensile modulus 4.67 GPa Tensile modulus 228 GPa
Poisson modulus 0.30 Poisson modulus 0.0
Mode I fracture energy 0.68 kJ/m2 Volume content 57.4%
Volume content 42.6%

Fig. 6.4 Three dimensional model developed. Mesh description

composite beam, and the final length of the initial crack. These two results are the
ones that will be compared with the numerical model developed.

The exact properties of the composite material used in the experimental simu-
lations were unknown when the experimental tests were performed [5]. However,
the composite is known to be made of carbon fibres and an epoxy polymeric matrix
from Hexcel composites. For the numerical simulation, the mechanical values con-
sidered to define the composite are the ones described in Table 6.1, obtained form
Hexcel Product data description. The fibre (AS4) and matrix considered are the ones
found in HexPly 8552 UD carbon prepegs.

6.3.2 Numerical Model Description

Two different numerical models have been developed to simulate the End Notch
Flexure Test. One using a plain stress two dimensional formulation and a second
one using a three dimensional formulation. The 2D model has been defined with 627
linear quadrilateral elements while the 3D model has 5016 linear brick elements.
The mesh defined for the three dimensional model is shown in Fig. 6.4.

Two different materials have been defined in the numerical simulation. One cor-
responding to the composite material and another one corresponding to the insert
material. The composite material is defined by the properties of the epoxy matrix
and the carbon fibres shown in Table 6.1. Fibre material is defined as an elastic
material. Matrix material is characterized by a damage law, like the one defined on
Sect. 6.2.3 of present document.
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Table 6.2 Insert material mechanical properties

Insert material properties

Tensile modulus 1,000 GPa
Shear modulus 10−9 GPa
Poisson modulus 0.0
Volume content 100%

The damage model used requires knowing the relation between the compression
strength and the tension strength of the material in order to obtain the correct damage
evolution. As these parameters are unknown, what is done in the present document
is to consider that both strengths the same and to define the fracture energy of the
material as the mode II fracture energy obtained from the experimental results. The
value of this energy, for the 3M101 beam, is: GII = 1.02kJ/m2.

The definition of the insert material properties has been done taking into account
its structural performance. The main effect of this material in the beam is allowing
the sliding of the section found above the insert along the section found below it. To
do so, a material with a shear modulus nearly zero has been defined (it has not been
defined as strictly zero to avoid numerical instabilities during the simulation). On the
other hand, the longitudinal and transversal elastic modulus have been defined with
a high value to avoid the penetration of the section above the insert into the section
below it. This material has been defined as an elastic material. Its main mechanical
properties are described in Table 6.2.

6.3.3 Comparison Between the Numerical
and the Experimental Results

The numerical and the experimental results are compared with the force–displace-
ment graph obtained for both cases. The displacement represented corresponds to
the vertical deflection of the point where the load is applied. This graph is shown
in Fig. 6.5, in which the results for the 2D and 3D numerical simulations and the
experimental test are represented.

Figure 6.5 shows that the two dimensional simulation provides exactly the same
results as the three dimensional one, thus, for these kind of problems, 2D simulations
are preferable, as the computer cost is much lower. However, the most important
result shown in Fig. 6.5 is the agreement between the numerical and the experimen-
tal results. The beam initial elastic stiffness obtained in the numerical simulation
is nearly the same that is obtained from the experimental test. And this agreement
between results is even better when comparing the beam maximum load capacity
or failure point. The only result that differs in the numerical simulation is the final
beam stiffness, when the crack has reached its maximum length. In this case, the
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Fig. 6.5 Force–displacement
graph obtained for the differ-
ent models
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Fig. 6.6 Damage in matrix material when the maximum deflection has been reached

numerical beam is a 6% stiffer than the experimental one (the stiffness obtained in
each case is, respectively, 1,146 N/mm and 1,076 N/mm).

The other result to be compared is the final crack length. The experimental values
obtained for this final crack length for the sample being compared (3M101) is of
50.34 mm, and the mean value of the crack length for all the GRIN006 serie is
around 49.0 mm; this is, a bit less than half the beam.

In the numerical simulation, the crack points correspond to those in which the
damage parameter, in matrix material, is equal to one. These points have a matrix
stiffness equal to zero. This implies that the composite serial stiffness is also zero,
due to the iso–stress condition imposed by the Serial/Parallel mixing theory. Those
points with matrix completely damaged cannot develop any shear strength. Hence,
the final crack length can by obtained by finding the point, closer to the beam
mid–span, with a value of the damage parameter, in matrix material, equal to one.
Figure 6.6 shows the damage parameter in matrix in the load step in which the beam
reaches its maximum deflection. In this figure can be seen that the crack length
obtained with the numerical simulation also nearly reaches the mid–span section.

The exact value of the damage parameter is shown, for the points represented in
Fig. 6.7a, in Fig. 6.7b. In this figure can be seen that point 13 (corresponding to mid–
span) reaches a damage value of 0.6, while the value of point 12 is approximately
0.98. Considering this last value close enough to one and thus, the section com-
pletely broken, the numerical crack length obtained is of 48 mm. The point found at
49 mm of the support has a damage value in matrix material of 0.89, which is also
close enough to one to consider that the numerical results are exactly the same as
the experimental ones.

In this last figure is also represented the force–displacement graph (with the force
value divided by 2,500 N, to fit into the figure). It can be seen that the main crack
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Fig. 6.7 Evolution of the damage parameter in the beam

is developed just after the beam reaches its maximum strength capacity. The lost of
stiffness suffered by the beam due to the crack propagation is stabilized as the crack
reaches the mid–span section because the crack cannot pass trough it. The sign of
the shear stresses is reversed at mid–span and, just in it, shear stresses are zero; so,
there are no efforts to damage the mid-span section.

6.3.4 Detailed Study of the Numerical Results

According to the force–displacement graph obtained for the beam (Fig. 6.5), the
results obtained with the three dimensional simulation match exactly with the results
obtained with the two dimensional simulation. Thus, for the sake of simplicity, the
detailed study of the numerical results is preformed using only the two dimensional
simulation.

The first thing to study of the results obtained from the numerical simulations is if
the supposition made to define the insert material is accomplished, this is: that it will
allow the sliding between the section above and below it, by reducing to nearly zero
its shear stiffness. To verify that this is the behaviour found in the insert material,
the horizontal gap that appears between the upper and lower nodes (nodes A and B
respectively in Fig. 6.8a) has been represented in Fig. 6.8b. This figure shows a linear
increment of the gap between both nodes for the first load steps. This gap increment
proves the validity of the material defined, as it shows that the section above the
insert of the beam slides over the section below it. This gap increment remains linear
until the displacement of the load point is a bit larger than 1.0 mm, at this point the
gap increases exponentially doubling its size. This point corresponds to the load
for which the crack propagation begins and it ends when the crack has reached the
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Fig. 6.8 Evolution of the damage parameter in the beam
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Fig. 6.9 Evolution of the horizontal gap (a) and the shear stresses (b) along the beam mid–width
for different load steps

section at mid–span. Afterwards, when unloading the beam, the horizontal gap size
recovers the linear behaviour found before the crack propagation.

A better comprehension of the process that takes place in the beam can be
obtained studying the evolution of the horizontal gap along the beam longitudinal
axis, and the evolution of the shear stresses in the same region. Both parameters
are displayed in Fig. 6.9 for different load steps. Each load step represented corre-
sponds to a displacement of the load point of the same magnitude (i.e. step 1.06
corresponds to a load point displacement of 1.06 mm). Figure 6.9 show that for the
load step 0.60, when the crack propagation has not begin, the only gap found is in
the sections where the insert is applied and that all shear stresses are concentrated
at the first section without insert (point P01 of Fig. 6.7a). However, when the crack
begins its propagation, the gap initiation, as well as the shear stresses peak, move
towards the beam mid–span. The final step represented, step 1.28, corresponds to
the load step in which the crack has reached the mid–span section. Figure 6.9 also
shows that the behaviour of the composite, when matrix is completely damaged, is
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Fig. 6.10 Longitudinal stresses in the composite for two different load steps

the same found in the insert material. So, as damage in matrix increases and its stiff-
ness is reduced, the composite cannot develop shear stresses and the section above
the mid–width plane slides freely over the section below.

The effect of the crack propagation on the beam can also be seen by studying the
longitudinal stresses in the composite (Fig. 6.10). The contour map of the longitu-
dinal stresses shown in Fig. 6.10a corresponds to step 0.6, when crack propagation
has not started. This figure shows that the distribution of longitudinal stresses in the
sections with the insert corresponds to the case of having two beams, one disposed
over the other, while the complete section (i.e. at mid–span) behave like just one
beam: the bending effort compresses the top of the beam section while the bottom
is in tension. On the other hand, when the crack has reached the mid–span section
(Fig. 6.10b), the two beams behaviour is extended to all the cracked sections, as it
can be seen along the whole left side of the beam.

The composite performance is obtained using the Serial/Parallel mixing theory,
which imposes an iso–strain condition in the fibre direction and an iso–stress condi-
tion in the remaining directions. As the shear stresses are developed in the direction
in which the iso–stress condition is applied, when matrix is completely damaged
and cannot develop more shear stresses, the same happens with the rest of compos-
ite components (fibre, in this case). This is the reason because the shear stress of the
composite, shown in Fig. 6.9b, is zero although fibre is an elastic material and still
has the capacity to develop stresses.

Finally, a last numerical test has been performed to validate the fracture length
parameter, required by the damage formulation used to simulate matrix material.
According to what has been explained in Sect. 6.2.3, the fracture length represents
the distance, perpendicular to the fracture surface, in which the fracture will be
developed in the finite element formulation. The mesh used in the finite element
simulation has a single element beside the gap opened by the insert, as it is shown
in Fig. 6.11. This figure also shows the gauss points found in a finite element.

With the gauss point distribution shown in Fig. 6.11, the fracture length to be
defined is half the gap size, as this is the gauss point length perpendicular to the
fracture plane. Three different simulations have been performed with different gap
sizes and fracture lengths. Model Delam-2D-g20 has a gap size of 20 µm and a frac-
ture length of 10 µm, model Delam-2D-g50 has a gap size of 50 µm and a fracture
length of 25 µm and, finally, model Delam-2D-g80 has a gap size of 80 µm and a
fracture length of 40 µm. The force–displacement graph obtained for these models



www.manaraa.com

138 X. Martı́nez et al.

Fig. 6.11 Finite elements and
gauss points found around the
gap opened by the insert in
the beam
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Fig. 6.12 Force–displacement graph obtained for three different gap size models. General view
and detail of the crack propagation zone

is displayed in Fig. 6.12a, and a detail of this same graph in 6.12b. This figure shows
that the results are practically the same for all cases and that only few differences
are found in the crack propagation zone. This agreement among the different mod-
els allows considering the formulation defined, and the fracture length considered,
correct.

6.4 Conclusions

The current work has shown that the Serial/Parallel mixing theory is able to simulate
a delamination process by using the appropriate constitutive equations to predict the
material behaviour of the composite components. No other help or formulation is
needed. This affirmation has been proved with the simulation of the End Notch Flex-
ure (ENF) test. The results obtained with the numerical simulation are practically
identical to the results obtained from the experimental tests.

The structural behaviour of the materials, obtained from the numerical simu-
lation, shows that the delamination phenomenon occurs as a result of the lost of
stiffness in matrix material due to the damage produced by the shear stresses in
it. This lost of stiffness in matrix material implies that no other component mate-
rial can develop serial stresses, due to the iso–stress condition of the Serial/Parallel
mixing theory in the serial direction. This is translated in a lost of stiffness of the
composite in all serial directions. In the case considered, the serial directions are all



www.manaraa.com

6 Study of Delamination with in Composites 139

directions non coincident with fibre orientation. Thus, the composite is unable to
avoid the shear deformations produced by the external loads. This situation is the
same defined by the insert material, which has been proved to allow a perfect sliding
between the materials found above and below it.

This procedure to deal with the delamination phenomenon provides an almost
perfect simulation of the phenomenon without making any material distinction of
the section expected to delaminate. All beam has been modeled with the same mate-
rial properties. Thus, the formulation becomes a good tool to study problems in
which the delamination is known to occur but it is not known in which structural
component or section will happen. Also, with the procedure developed, no remesh-
ing formulation, neither contact, is needed to obtain the delamination effects on the
structure; which reduces significatively the computational cost of the simulation.

The simulation performed has proved, also, that the damage formulation devel-
oped to simulate the matrix material constitutive behaviour requires knowing the
properties of the mesh generated to perform the simulation, as the fracture energy
that can be developed by the model depends on the fracture length of it. This
fracture length corresponds to the dimension perpendicular to the fracture surface.
However, once knowing this dimensional parameter, the results obtained are mesh
independent.

Finally, results obtained have shown that there is no difference in the results,
for the case considered, between performing a two dimensional simulation or a
three dimensional one, although the computational cost of the three dimensional
simulation is considerably more expensive. This shows that the Serial/Parallel mix-
ing theory, together with the damage formulation proposed, can deal with the
delamination phenomenons with both simulations: 2D and 3D.
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Chapter 7
Interaction Between Intraply
and Interply Failure in Laminates

F.P. van der Meer and L.J. Sluys

Abstract A mesoscale model for finite element analysis of failure in laminates is
presented. The model consists of separate parts for failure inside a ply (intraply) and
failure between plies (interply). Both parts offer a description from onset of failure
to complete local failure, thus allowing for progressive failure analysis. Intraply fail-
ure is simulated with a softening plasticity model based on a Tsai-Wu criterion with
viscoplastic regularization. Details are presented on the implementation of the soft-
ening law for orthotropic materials in finite element computation. Interply failure
is modeled using interface elements with a damage law for mixed mode delami-
nation. The performance of the model is illustrated by means of an analysis of a
laminate with a sharp internal notch – a case in which different modes of ply failure
successively take place and interact with failure between the plies.

7.1 Introduction

Failure of laminated composites is generally analyzed on the mesolevel, i.e. the
laminate is modeled as a stack of homogeneous plies, each with its own orthotropic
properties that depend on the fiber direction (see e.g. [6,10] and references therein).
With this approach, two distinct failure mechanisms may occur in the laminate: fail-
ure inside a ply (intraply) and failure between the plies (interply). The first of these
can be connected to different underlying micromechanical failure modes, such as
fiber fracture, fiber buckling, matrix cracking and fiber/matrix debonding. The sec-
ond is referred to as delamination. Ultimate failure of a laminate is often preceded
by both failure mechanisms. Therefore, simulation of failure in laminated compos-
ites requires a model which includes both intraply and interply failure as well as
interaction. In this paper, such a model is presented. For both failure mechanisms,

F.P. van der Meer and L.J. Sluys
Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048,
2600 GA Delft, The Netherlands, e-mail: f.p.vandermeer@tudelft.nl
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constitutive models are incorporated that give a complete description of the local
process from initial elastic behavior to complete loss of integrity.

For intraply failure, numerous theories exist that provide criteria to evaluate the
stresses inside a ply, either based on the different failure modes [7, 9, 17] or defined
as polynomial interaction between stress components [11, 24]. However, not much
is known on what happens inside a ply after such a criterion has been violated, even
though this information is necessary to predict redistribution of stresses and ultimate
failure of the laminate. We have used an interactive criterion and extended it with a
new softening plasticity model for the simulation of progressive failure.

For interply failure, models for the nonlinear material behavior are available
in literature. The interface can be modeled with interface (or decohesion) ele-
ments [4,12,14,21,25,30], thin volume elements [27], or embedded discontinuities
incorporated through the partition of unity method [18]. Here, we have used inter-
face elements with a constitutive law developed by Turon et al. [25] to capture the
onset and growth of delamination cracks.

The outline of this paper is as follows. First, the softening orthotropic material
model for intraply failure is presented. Next, the delamination model is described.
And finally, the performance of the framework combining the two models is exem-
plified.

7.2 Softening Orthotropic Plasticity

The single expression failure criteria for orthotropic materials by Hoffman [11] and
Tsai and Wu [24] may be written in tensor notation (cf. [19]):

f (σ ) =
1
2
σ ·Pσ +σ ·p−1 (7.1)

where σ is the stress in Voigt notation, and the components of matrix P and vec-
tor p are computed from the uniaxial strength parameters. Every stress state for
which f ≤0 is considered admissible. For the generalized Von Mises version of the
Tsai Wu criterion, P and p are defined as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
F1tF1c

− 1√
F1tF1cF2tF2c

− 1√
F1t F1cF2t F2c

0 0 0

− 1√
F1t F1cF2t F2c

2
F2tF2c

− 1
F2tF2c

0 0 0

− 1√
F1t F1cF2t F2c

− 1
F2tF2c

2
F2t F2c

0 0 0

0 0 0 1
F2

4
0 0

0 0 0 0 1
F2

6
0

0 0 0 0 0 1
F2

6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.2)
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and

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
F1t

− 1
F1c

1
F2t

− 1
F2c

1
F2t

− 1
F2c

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.3)

where F1t , F1c, F2t , F2c, and F6 are the five independent strength parameters of a
transversely isotropic material, representing the longitudinal tensile and compres-
sive strength, the transverse tensile and compressive strength and the longitudi-
nal shear strength, respectively. F4 is the transverse shear strength, which is, for
transverse isotropy, a dependent quantity according to

F4 =

√
F2tF2c

3
(7.4)

The simplest way to introduce softening behavior in a plastic material with a
yield criterion in the form of Eq. (7.1), is to define a scalar softening variable κ
which determines the degradation of all strength parameters. If the evolution of all
strength parameters is given by Fi(κ) = F0

i h(κ) with an isotropic softening function
h(κ), ranging from 1 to 0, criterion 7.1 may be rewritten as

f (σ ,κ) =
1
2
σ ·P(κ)σ +σ ·p(κ)−1 (7.5)

with

P(κ) =
1

(h(κ))2 P0 (7.6)

p(κ) =
1

h(κ)
p0

where P0 and p0 are constructed from the initial strength parameters, F0
i , as in

Eq. (7.2)–(7.3). In this case, the yield surface shrinks upon softening to the origin of
the stress space (see Fig. 7.1).

An evolution law for the softening variable is needed. A convenient choice is to
couple softening variable κ to the equivalent plastic strain in incremental format,
according to

∆κ =
√
∆εp ·Q∆εp (7.7)

where εp is the plastic strain and

Q = diag

[
1,1,1,

1
2
,

1
2
,

1
2

]
(7.8)
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Fig. 7.1 Softening Tsai Wu failure criterion in plane stress space (F1t = 2,280 MPa, F1c =
1,725 MPa, F2t = 70 MPa, F2c = 228 MPa)

It would be more realistic to have an anisotropic softening law, because degrada-
tion is typically not isotropic (e.g. matrix cracking due to transverse tension hardly
reduces the tensile strength in longitudinal direction). But implementation of an
orthotropic softening law is significantly more complicated. For each failure mode
a state variable will be needed (i.e. a vector κ , instead of scalar κ), each with its
own evolution law depending on the strain history. And for each strength parame-
ter, a law to compute the degradation from the state variables will be needed (i.e. a
vector h instead of scalar h). Many extra material parameters or assumptions will be
needed. A possible danger of the softening of individual strength parameters, is that
combinations of strength parameters may occur for which the yield surface is no
longer convex, as a consequence of which uniqueness in the stress return mapping
is lost. Another problem is that softening or hardening in one direction will have
opposite effects in another direction [3, 13].

7.2.1 Viscoplastic Regularization

Softening material models, such as the one described above, suffer severe mesh
dependency [22]. Localization of deformations will occur in one row of elements,
as a consequence of which the dissipated energy will depend on the element size,
approaching zero for infinitesimal element size. The most straightforward method
to solve this problem is the fracture energy approach, in which the local stress strain
behavior depends on the element size [2]. However, this does not solve the mesh
sensitivity problem completely. Moreover, in the case of non-localized material
degradation, which may occur in laminates as distributed transverse matrix crack-
ing [16], this approach causes an opposite mesh-dependency, i.e. a smaller element
size causes an increase of the dissipated energy.

Three better options for regularization are non-local models [1], gradient plastic-
ity [15] and viscoplasticity [22]. Viscoplasticity is chosen here, for its relatively
easy implementation. The consistency model formulation, introduced by Wang
et al. [28], is used. The basic concept of this formulation is that the yield surface
expands for nonzero plastic strain rate. In our current model, this comes down to
the introduction of a dependency on κ̇ in the softening function h. We choose a
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softening law that is linear in both κ and κ̇:

h(κ , κ̇) = 1 + Hκ+V κ̇ (7.9)

in which softening modulus H typically is negative and viscoplastic modulus V
typically is positive. The softening function h is not allowed to become smaller than
hmin = 0.01. After this value has been reached once, h is fixed, so that recovery of
strength after failure is impossible.

Note that, upon the assumption that the plastic strain rate is constant over the
time step (i.e. κ̇ = ∆κ/∆t), both κ and κ̇ depend on one single unknown, ∆κ , inside
each time step ∆t. Therefore, Eq. (7.9) may be rewritten as

h(∆κ) = 1 + Hκ0 +
(

H +
V
∆t

)
∆κ (7.10)

where κ0 is the value of κ at the end of the previous time step.

7.2.2 Stress Evaluation

The stress evaluation is executed with a return mapping algorithm. The unknown
variables in the stress evaluation for time step n are σn and ∆κn. As long as the
material is in the plastic state, these variables should satisfy the yield criterion

f =
1
2
σn ·P(∆κn)σ n +σn ·p(∆κn)−1 = 0 (7.11)

and the constitutive relation

g = σn −D(εn − εp
n−1)+∆λ (σn,∆κn)Dm(σn,∆κn) = 0 (7.12)

in which the plastic multiplier ∆λ and the direction of plastic flow m are secondary
variables, which are computed from ∆κn and σn, and D is the elastic stiffness matrix.
Equation 7.12 is based on fully implicit Euler backward integration of the plastic
flow rule

∆εp
n = ∆λnmn (7.13)

For clarity, the index n is dropped in the remainder of this section – all quantities
refer to time step n, unless indicated otherwise.

We assume associative flow:

m =
∂ f
∂σ

(7.14)

An expression for ∆λ is obtained by combining Eq. (7.13) and (7.7).

∆λ =
∆κ√

m ·Qm
(7.15)
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The derivatives of f and g with respect to ∆κ and σ read:

∂ f
∂∆κ

= −1
h
∂h
∂∆κ

(σ ·Pσ +σ ·p) (7.16)

∂ f
∂σ

= Pσ + p (7.17)

∂g
∂∆κ

= Dm
∂∆λ
∂∆κ

+∆λD
∂m
∂∆κ

(7.18)

∂g
∂σ

= I+Dm⊗ ∂∆λ
∂σ

+∆λD
∂m
∂σ

(7.19)

with

∂h
∂∆κ

= H +
V
∆t

(7.20)

∂m
∂σ

= P (7.21)

∂m
∂∆κ

= −1
h
∂h
∂∆κ

(2Pσ + p) (7.22)

∂∆λ
∂σ

=
∂∆λ
∂m

∂m
∂σ

(7.23)

∂∆λ
∂∆κ

=
1√

m ·Qm
+
∂∆λ
∂m

· ∂m
∂∆κ

(7.24)

∂∆λ
∂m

= − ∆κQm

(m ·Qm)3/2
(7.25)

The return mapping algorithm is presented in Fig. 7.2, in which B is a matrix
containing the partial derivatives of f and g with respect to ∆κ and σ

B =

⎡⎢⎣
∂ f
∂∆κ

∂ f
∂σ

∂g
∂∆κ

∂g
∂σ

⎤⎥⎦ (7.26)

and Dcon is the consistent tangent (for derivation, see Sect. 7.2.3).
In the algorithm, ∆κ is initialized at a nonzero value. For this purpose the value

for κ̇ is stored for each integration point, additional to the state variable κ . In order
to improve the stability of the return mapping algorithm, the Newton Raphson loop
that solves for ∆κ and σ is reformulated in a form analogous to Heun’s method.

When the strength approaches zero, this algorithm may fail, due to the singularity
of f for h = 0. When the first algorithm fails, another return mapping scheme is
entered. In this algorithm, there is a double iteration loop. The outer loop searches
for the correct value of ∆κ , while the inner loop solves the plasticity equations for
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(1) Initialize σ0 = D(ε− εp
n−1), ∆κ

0 = 0

(2) If f (σ0,∆κ0) < 0: exit with Dcon = D, σn = σ0, κn = κn−1, κ̇n = 0
otherwise continue with (3)

(3) Initialize: ∆κ0 = ∆tκ̇n−1, j = 0

(4) Return mapping iteration: j = j +1

(5) Evaluate f = f (∆κ j−1,σ j−1) and g = g(∆κ j−1,σ j−1)

(6) Evaluate derivatives of f and g with respect to ∆κ and σ (see 7.16–7.19)

(7) Compute first increment

[
d∆κ
dσ

]
1

= −[B(∆κ j−1,σ j−1)
]−1

[
f
g

]

(8) Update unknowns:

[
∆̃κ j

σ̃ j

]
=

[
∆κ j−1

σ j−1

]
+

[
d∆κ
dσ

]
1

(9) Re-evaluate derivatives with updated unknowns

(10) Compute second increment

[
d∆κ
dσ

]
2

= −
[
B(∆̃κ j

, σ̃ j)
]−1
[

f
g

]

(11) Update unknowns

[
∆κ j

σ j

]
=

[
∆κ j−1

σ j−1

]
+

1
2

([
d∆κ
dσ

]
1

+

[
d∆κ
dσ

]
2

)
go to (4)

(12) If converged go to (13), otherwise go to (4)

(13) Store κn = κn−1 +∆κ j , σn = σ j , κ̇n =
∆κ j

∆tn
and compute Dcon with Eq. (7.57)

Fig. 7.2 Return mapping algorithm for rate dependent orthotropic plasticity with softening

ideal plasticity with given ∆κ (see Fig. 7.3). Derivatives of f and g to unknowns ∆λ
and σ can be computed much simpler when ∆κ is fixed (cf. Eq. (7.16)–(7.25)):

∂ f
∂∆λ

= 0 (7.27)

∂ f
∂σ

= Pσ (7.28)

∂g
∂∆λ

= Dm (7.29)

∂g
∂σ

= I+∆λDP (7.30)

In each outer iteration there is an input value ∆κ in, which determines the strength,
and an output value ∆κout, which is obtained from the magnitude of the plastic strain
increment for this strength. When ∆κout = ∆κ in, the correct value of ∆κ has been
found.

As long as ∂h/∂∆κ > 0 (which is necessary for a regularizing effect of the
rate dependent term) the yield surface expands as ∆κ in increases, and therefore the
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(1) Initialize: σ0 = D(ε− εp
n−1), ∆λ

0 = 0, k = 0, j = 0

(2) Outer iteration: k = k +1

(3) Give estimate for ∆κ with

∆κ in
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h(κn−1, κ̇n−1)−h(κn−1,0)
∂h/∂∆κ

k = 1

max

(
0,

h(κn−1, κ̇n−1)−hmin

∂h/∂∆κ
,∆κout

1

)
k = 2

∆κ in
k−1 +∆κ in

k−1 −∆κ in
k−2

δκk−1

δκk−2 −δκk−1
k > 2

(4) Inner iteration: j = j +1

(5) Evaluate f (∆κ in
k ,σ j−1) and g(∆κ in

k ,∆λ j−1,σ j−1)

(6) Compute derivatives of f and g with respect to ∆λ and σ (see 7.27–7.30)

(7) Update unknowns

[
∆λ j

σ j

]
=

[
∆λ j−1

σ j−1

]
− [B(∆λ j−1,σ j−1)

]−1

[
f
g

]
(8) Inner loop: If converged go to (9), otherwise go to (4)

(9) Outer loop: Check whether ∆κ in is compatible with obtained plastic flow
∆κout

k =
√
∆εp ·Q∆εp , δκk = ∆κout

k −∆κ in
k

If δκk < tolerance, or (h = hmin and δκk < 0) go to (10), otherwise go to (3)

(10) Store κn = κn−1 +∆κout
k , σn = σ j, κ̇n =

∆κout
k

∆t
and compute Dcon with Eq. (7.57)

Fig. 7.3 Stable return mapping algorithm for rate dependent orthotropic plasticity with softening
in case the origin in the stress space is approached

Fig. 7.4 Relation between ∆κ in
k and ∆κout

k . An increase in trial value ∆κ in
k+1 > ∆κ in

k results in a
decrease in the amount of plastic strain and consequently in ∆κout

k+1 < ∆κout
k

plastic strain increment ∆εp and, consequently, ∆κout become smaller, as illustrated
in Fig. 7.4. So we postulate

∂∆κout

∂∆κ in < 0 ∀ ∆κ in > 0 (7.31)

In the first two outer iterations, bounds for ∆κ are determined, and from the third
iteration on, the estimate for ∆κ is repeatedly improved with linear interpolation or
extrapolation based on the ∆κ in and ∆κout values from the previous two iterations.
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Fig. 7.5 Update of ∆κ in through linear interpolation

The first estimate is obtained assuming

h(κn, κ̇n) = h(κn−1, κ̇n−1) (7.32)

From Eq. (7.31), it follows that if ∆κ in is higher than the correct value of ∆κ ,
∆κout is lower than that value, and vice versa. So if we set

∆κ in
2 = ∆κout

1 (7.33)

it is secured that the correct value of ∆κ lies between ∆κ in
1 and ∆κ in

2 . And if we add
the two conditions

∆κ in
2 ≥ 0 (7.34)

h(∆κ in
2 ) ≥ hmin (7.35)

the search for the true ∆κ must converge when the next estimate for ∆κ in
k is each

time computed from linear interpolation (see Fig. 7.5), except when h(∆κ in
2 ) = hmin

and h(∆κout
2 ) < hmin. In that case the material point has failed and h is fixed at hmin

and the stress obtained with h(∆κ in) = hmin is the correct stress.

7.2.3 Consistent Linearization

For proper convergence of the model, it is of great importance that a consistent
tangent is used. The derivation of the consistent tangent is given below.

We start with expanding the constitutive law 7.12 around a small variation:

δg = 0 ⇔ δσ = Dδε−Dmδλ −∆λDδm (7.36)

The expression for δm is:

δm =
∂m
∂σ

δσ +
∂m
∂κ

δ∆κ (7.37)
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with

δ∆κ =
∂∆κ
∂λ

δλ +
∂∆κ
∂m

·δm (7.38)

and

∂m
∂σ

= P (7.39)

∂m
∂∆κ

=
∂P

∂∆κ
σ +

∂p
∂∆κ

(7.40)

∂∆κ
∂m

= ∆λ
Qm√

m ·Qm
(7.41)

∂∆κ
∂λ

=
√

m ·Qm (7.42)

Equation 7.37 is solved for δm, after substitution of Eq. (7.38), resulting in

δm = E−1 ∂m
∂σ

δσ +E−1 ∂m
∂∆κ

∂∆κ
∂λ

δλ (7.43)

with

E = I− ∂m
∂∆κ

⊗ ∂∆κ
∂m

(7.44)

With Eq. (7.6), we have

∂P

∂∆κ
= − 2

h3

∂h
∂∆κ

P0 = −2
h
∂h
∂∆κ

P (7.45)

∂p
∂∆κ

= − 1
h2

∂h
∂∆κ

p0 = −1
h
∂h
∂∆κ

p (7.46)

Using Eqs. (7.45) and (7.46), (7.40) may be rewritten into

∂m
∂∆κ

= −1
h
∂h
∂∆κ

(2Pσ + p) (7.47)

Substitution of Eq. (7.43) into Eq. (7.36) gives

Aδσ = Dδε−Dm̄δλ (7.48)

with

A = I+∆λDE−1 ∂m
∂σ

(7.49)

m̄ = m+∆λE−1 ∂m
∂∆κ

∂∆κ
∂λ

(7.50)
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Next, we eliminate δλ . For this purpose δ f is expanded:

δ f =
∂ f
∂σ

· δσ +
∂ f
∂∆κ

δ∆κ

= m · δσ +
∂ f
∂∆κ

(
∂∆κ
∂λ

δλ +
∂∆κ
∂m

δm
)

(7.51)

Substitution of Eq. (7.43) into Eq. (7.51), with the condition δ f = 0, gives

δλ =
1
η

n̄ · δσ (7.52)

with

n̄ = m+
∂ f
∂∆κ

∂∆κ
∂m

·E−1 ∂m
∂σ

(7.53)

η = − ∂ f
∂∆κ

∂∆κ
∂λ

(
1 +

∂∆κ
∂m

·E−1 ∂m
∂∆κ

)
(7.54)

Substitution of Eq. (7.52) into Eq. (7.48) gives:

δε =
[
H−1 +

1
η

n̄⊗ m̄
]
δσ (7.55)

with
H = A−1D (7.56)

The compliance matrix in Eq. (7.55) is inverted with the Sherman–Morrison for-
mula [8] to arrive at the consistent tangent:

Dcon = H− (Hm̄)⊗ (n̄ ·H)
η+ n̄ ·Hm̄

(7.57)

The consistent tangent is not necessarily symmetric, even when associative flow is
assumed.

Note that the derivation above holds for any differentiable hardening or softening
function h(∆κ), with or without rate dependent term.

7.2.4 Convergence Issue

Although a consistent tangent is used, difficulties may arise in the first iteration of
the global Newton–Raphson loop. The problem is that the converged solution from
the previous time step is not an equilibrium solution for the current time step. Thus,
the Newton–Raphson loop starts with an unbalance. This results in instabilities com-
parable to what happens in a nonlinear analysis with too large time steps, but here,
the problem cannot be solved by reducing the time step size.
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Fig. 7.6 Typical strength evolution for rate dependent model (left), with corresponding evolution
of κ (right). Within each time step in the plastic regime, there is a hardening relation between κ
and h (i.e. between plastic strain and strength), whereas the relation from one time step to the other
may be a softening relation

The problem can be illustrated as follows. In standard (rate independent) finite
element calculations the internal force vector is a function of displacements only
fint(u). But upon the introduction of rate dependency, we get fint(u, u̇). Within every
time step it is possible to reformulate the internal force vector to fint(∆u), similar as
in rate independent analysis. But an important difference is, that now fint(∆u = 0)
�= 0. This is related to the behavior of the hardening function h (see Fig. 7.6). In each
time step, there is a function h(∆κ), but in each time step it is a different one, and if
∆κn−1 �= 0, the strength in case of an elastic increment in time step n is not equal to
the equilibrium strength from the previous time step

h(∆κn = 0) �= h(κn−1, κ̇n−1) (7.58)

A better starting point is obtained with ∆un = ∆un−1, or, in the more general case
in which the time step size may vary

∆un = ∆un−1 ∆tn

∆tn−1 (7.59)

In that case, the internal force vector f t+∆t
int (∆ut) does approach zero upon time step

size reduction.

7.2.5 Associativity Versus Non-associativity

A problem with the use of associative plasticity and a smooth yield surface for
strongly orthotropic materials, is that the direction of plastic flow tends to display a
pronounced orientation in the weak direction, even when the material is loaded in the
strong direction. Moreover, the direction of plastic flow when loading in the strong
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Fig. 7.7 Sensitivity of plastic flow direction in uniaxial tensile test in strong direction to tensile
strength in weak direction (F1t = 2,280 MPa, F1c = 1,725 MPa, F2c = 228 MPa)

direction is very sensitive to the transverse strength parameters. This sensitivity is
illustrated in Fig. 7.7, in which the direction of plastic flow (m = ∂ f /∂σ ) in case
of uniaxial tensile loading in the strong (fiber) direction is shown for three different
values of the transverse tensile strength.

As a consequence, unrealistically large transverse deformations may dominate
the structural response in the simulation of a test with fiber failure. The transverse
strains influence the softening rate and possibly accelerate delamination. This prob-
lem cannot be solved easily by abandoning the associative plasticity assumption,
because this endangers the stability of the stress evaluation. For most sets of exper-
imental data, an artificial increase of the transverse tensile strength may be applied,
such that the direction of plastic flow in uniaxial tensile loading in fiber direction
is approximately parallel to the load direction. An increase in this value can be jus-
tified because the in situ transverse strength can be expected to be higher than the
experimental value for the isolated ply [5, 7, 23]. But still, it would be a mere coin-
cidence if the value for the in situ transverse strength is equal to the value for which
spurious transverse strains are suppressed.
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7.3 Delamination

For the modeling of delamination, plane interface elements are used (see Fig. 7.8).
The elements are constructed from two quadrilateral planes, that are initially on top
of each other and connected with a high dummy stiffness K. An orthonormal frame
{s,t,n} is defined with the n-axis normal to the interface plane. To avoid spurious
oscillations in the traction distribution, a Newton-Cotes integration scheme is used,
as proposed by Schellekens and De Borst [20].

Several different material models for the analysis of delamination with interface
elements have been proposed. We use the model developed by Camanho et al. [4]
in the improved version of Turon et al. [25]. With this constitutive model, mixed
mode delamination with varying mode ratio can be analyzed. Two modes are dis-
tinguished: shear failure (·)r and normal failure (·)n. In both modes the relation
between traction and crack opening is bilinear (see Fig. 7.9). For normal compres-
sion, the interface behaves elastically to prevent interpenetration. Input parameters
are single mode fracture toughness GIc and GIIc, single mode strength tmax

n and tmax
r ,

interaction parameter η , and initial stiffness K.
The values of the displacement jump for onset and propagation in single mode

opening are calculated from the input parameters with

δ 0
n =

tmax
n

K
, δ f

n =
2GIc

tmax
n

(7.60)

δ 0
r =

tmax
r

K
, δ f

r =
2GIIc

tmax
r

(7.61)

where index 0 refers to onset of damage and index f to propagation.

Fig. 7.8 Definition of 8-node
interface element with
isoparametric axes {ξ ,η}
and local orthogonal frame
{s, t,n}

Fig. 7.9 Relation between traction and relative displacement
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For the evaluation of the traction, the equivalent displacement jump is calculated
via

δb =
√
〈δn〉2 + δ 2

r (7.62)

where subscript b refers to the current mixed mode and δr is defined as the total shear
displacement jump: δ 2

r = δ 2
s + δ 2

t . Normal relative displacements only contribute
when positive, hence the use of the MacAuley operator, which is defined as 〈x〉 =
(x + |x|)/2.

The mixed mode ratio β and the related variable B are computed according to

β =
δr

δr + 〈δn〉 (7.63)

B =
β 2

1 + 2β 2−2β
(7.64)

The onset criterion and the propagation criterion for the current mixed mode ratio
are

δ 0
b =
√

(δ 0
n )2 +

(
(δ 0

r )2 − (δ 0
n )2
)

Bη (7.65)

and

δ f
b =

δ 0
n δ

f
n +
(
δ 0

r δ
f

r − δ 0
n δ

f
n

)
Bη

δ 0
b

(7.66)

respectively, where η is a material parameter that is to be obtained from experimen-
tal data and is related to mode interaction.

With this, the bilinear constitutive law for the current mixed mode ratio is com-
plete and the damage variable can be updated. Upon monotonic loading, the damage
variable, d, is calculated with

d =
δ f

b

(
δb − δ 0

b

)
δb

(
δ f

b − δ 0
b

) , d ∈ [0,1] (7.67)

To obtain the correct loading-unloading-reloading behavior, the following condition
is added

ḋ ≥ 0 (7.68)

which demands storage of d as history variable at each integration point, similar to
the description by Jiang et al. [12], which is different from the description by Turon
et al. [25], where the maximum total displacement jump, δb, is stored as history
variable and substituted into Eq. (7.67).
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Tractions in the local coordinate frame are calculated by means of the secant
tangent

Di j = δ̄i jK

(
1− d

[
1 + δ̄3 j

〈−δn〉
δn

])
(7.69)

where δ̄i j is the Kronecker delta, barred to distinguish it from the relative displace-
ments; i and j range from 1 to 3, where 3 is the normal direction. The term within
square brackets is included to cancel the contribution from d in the normal direction
in case of a negative displacement jump in normal direction.

When d does not grow, the consistent tangent is equal to the secant tangent,
otherwise it is defined as

Dcon
i j = Di j −K

[
1 + δ̄3i

〈−δn〉
δn

][
1 + δ̄3 j

〈−δn〉
δn

]
Sδiδ j (7.70)

with

S =
δ f

b δ
0
b(

δ f
b − δ 0

b

)
(δb)

3
(7.71)

7.4 Numerical Example

As an example of the possibilities of the mesoscale model with both intraply and
interply failure, we consider a rectangular plate with an interior notch (see Fig. 7.10,
cf. [29, 30]). A [0/90]s laminate is considered, of which only the upper two plies
are modeled, due to symmetry. The two in-plane axes of symmetry are also used
to reduce the size of the model. Each ply is modeled with a single layer of brick
elements. The plies are connected with interface elements. The material parameters
are:

• Elastic lamina properties: E1 = 140 · 103 MPa E2 = 10 · 103 MPa, ν12 = ν23 =
0.21, G12 = 5 ·103 MPa, in which E1 and E2 are the longitudinal and transverse
Young’s modulus, ν12 and ν23 are the longitudinal and transverse Poisson’s ratio
and G12 is the longitudinal shear modulus.

• Lamina strength properties: F1t = 2,280 MPa, F1c = 1,725 MPa, F2t = 57 MPa,
F2c = 228 MPa, F6 = 76 MPa.

Fig. 7.10 Notched laminate
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• Lamina softening properties: H =−0.8,V = 0.1/s, loading rate: 0.5 mm/s (1%/s).
• Interface properties: K = 50 · 103 N/mm3, tmax

n = 10 MPa, tmax
r = 6 MPa, GIc =

0.35 N/mm, GIIc = 0.70 N/mm, η = 1.

The values for the elastic properties of a unidirectional lamina and the interface
properties are those given by Yang and Cox for a carbon/epoxy laminate [30]. How-
ever, the interface strength parameters are reduced, as proposed by Turon et al. [26]
to allow for the use of a relatively coarse mesh (this reduction leads to an increase in
the length of the cohesive zone). The lamina strength properties are those provided
by Daniel and Ishai [6] for a unidirectional carbon/epoxy lamina.

A similar analysis has been executed by Wisnom and Chang [29] and by Yang
and Cox [30]. The former used stacked plane stress elements connected with
springs, the latter used volume elements. In both references, not only the interply
failure, but also the intraply failure was modeled with interface elements. In exper-
iments it has been observed that a splitting crack grows from the notch tip in the
0-layers. This crack has been modeled in [29] and [30] by inserting interface ele-
ments where the crack is expected. The orthotropic plasticity model used here is
more general, since the crack path need not be specified beforehand. Moreover, it
allows for the modeling of ultimate failure of the laminate.

The evolution of plasticity in the ply with fibers in loading direction is shown in
Fig. 7.11. It can be observed that the split grows as long as the load increases. In the
continuum approach, the splitting mechanism is necessarily represented by a band
with localized deformation. This band is parallel to the fiber direction, which is in
correspondence with the experimental observations. Then tensile failure initiates at
the notch tip and propagates throughout the cross section. Eventually, the band with
tensile failure deviates from the plane of symmetry, after which the assumption of a
symmetric response is no longer realistic. Viscoplastic regularization preserves the
mesh objectivity of the results.

The final size of the delamination area due to the growth of the splitting crack is
shown in Fig. 7.12. This figure displays the state at peak load level. After this, the
triangular delamination area that accommodates the splitting crack in the 0-layer
does not grow any further. In the post peak part of the simulation, some delamination
in the vicinity of the tensile failure has been observed.

Figure 7.13 shows part of the deformed mesh, shaded where softening in the
plies occurs. The two areas of plastic strain, corresponding with the different failure
mechanisms, can be distinguished. The sliding between the two plies is also visible.

Fig. 7.11 Evolution of softening variable h in 0-ply. The arrow indicates the notch tip
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Fig. 7.12 Interface damage
near the notch tip at peak load
level. The arrow indicates the
notch tip. Part of the mesh
is shown, the arrow is scaled
accordingly (cf. Fig. 7.11)

Fig. 7.13 Load displacement diagram and zoom of final deformed mesh (displacements in load
direction only). The arrow indicates the notch tip. Part of the mesh is shown, the arrow is scaled
accordingly (cf. Fig. 7.11)

7.5 Discussion

A model for mesoscale analysis of failure in composite laminates has been pre-
sented. An existing model for delamination has been combined with a new softening
plasticity model for lamina failure. The combined model is robust, due to a carefully
designed stress evaluation algorithm and the use of a consistent tangent opera-
tor. The simulation of failure processes in laminates that involve both interply and
intraply processes and their interaction is possible with this model. In the analysis of
a notched laminate a sequence of interacting failure events is simulated: the growth
of a splitting crack in one of the plies, which is accommodated by delamination
between this ply and its neighbor, and subsequently the tensile failure in all plies,
which constitutes final failure of the laminate.

In developing the softening model, several non-trivial choices had to be made.
Firstly for the failure criterion. An interactive criterion has been chosen for reasons
of computational efficiency and robustness, in spite of the appealing physical moti-
vation of failure mode based criteria. Secondly for the degradation law. The simplest
possible formulation with which complete local failure can be simulated has been
chosen, with the motivation to keep the computation robust and to limit the number
of input parameters.

Some drawbacks of the softening model in its current form are that the direction
of plastic strain is often unrealistic resulting in spurious transverse strains, and that
viscoplastic regularization is a method that is not clearly linked to physical phenom-
ena. Furthermore, it would be ideal if fracture energy values measured in different
uniaxial tests would be direct input parameters for the material model, which is
currently not the case.
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Both the delamination model and the softening plasticity model, put a serious
restriction on the maximum element size in the regions where failure occurs. The
cohesive zone in delamination and the localization band in intraply failure have to be
spanned by more than one element. In the already relatively costly three dimensional
framework, which is necessary to cover all possible failure events, this means that
there is a limit to the size of the structure that can be analyzed without excessive
growth of computation time.
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Chapter 8
A Numerical Material Model for Predicting
the High Velocity Impact Behaviour
of Polymer Composites

Lucio Raimondo, Lorenzo Iannucci, Paul Robinson, and Silvestre T. Pinho

Abstract This paper describes key features of an advanced, physically-based,
numerical material model for predicting the static and dynamic, failure and dam-
age, response of polymer matrix composites with fibrous UD plies. The model has
been implemented into the explicit Finite Element code LS-DYNA3D for solid brick
elements with one integration point.

A comprehensive test programme was conducted for characterising the high
velocity impact response of a class of NCF/Epoxy composites. The impact tests
were conducted for varying impact conditions and parameters such as: impact angle,
coupon thickness, laminate lay-up and projectile material. Data from these tests
was reduced in the form of ballistic curves, mass of target debris generated upon
complete penetration, and (C-Scan) impact damage areas. This data was used for
validation of the proposed model.

General conclusions from this work indicate that physically-based modelling
approaches can improve considerably the predictive capabilities of current FE codes
for structural analysis applications.

8.1 Introduction

There are four main different strategies that have been employed for predicting
composite impact damage within the low and medium velocity regime [6]:

1. A failure criteria approach (which can be based on the equivalent stress or strain)
2. A fracture mechanics approach (based on energy release rates)
3. A plasticity or yield surface approach
4. A damage mechanics approach

L. Raimondo, L. Iannucci, P. Robinson, and S.T. Pinho
Imperial College London, Department of Aeronautics, South Kensington Campus,
London SW7 2AZ, United Kingdom,
e-mail: {lucio.raimondo, lo.iannucci, p.robinson, silvestre.pinho}@imperial.ac.uk
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Published works can be found in the open literature on composites for high
velocity impact modelling. The approaches used for high velocity impact mod-
elling typically fall in one or more of the categories listed above. The good results
obtained from application of the model in [16] indicate that “hybrid approaches”
can be particularly effective. An attractive failure and damage modelling strategy
was proposed in [9, 10] based on the simultaneous application of the strategies (1),
(2) and (4) that were listed above: phenomenological failure criteria were applied to
predict damage initiation, a DM (Damage Mechanics) approach based on fracture
mechanics was applied for predicting damage evolution. Such hybrid techniques
proved to be accurate in predicting the low-velocity impact response of polymer
composites [3].

In this work, a damage model is proposed for high velocity impact modelling
based on the combined application of different modelling strategies, i.e. the appli-
cation of plasticity, failure, damage mechanics and fracture mechanics. This work
is an enhanced version of a model previously implemented in LS-DYNA3D [9,10].

8.2 A Phenomenological Model for Predicting Material
Non-linear Effects in UD Plies Under Compressive/Shear
Loading Conditions

8.2.1 Premise

In UD polymer plies, compressive failure is ultimately driven by shear mechanisms.
This is evident from visual examination of failed composite specimens: the fracture
plane orientation for the case of transverse compressive failure is inclined to the
loading directions and principal material symmetry axes. The non-linear behaviour
of composites under loading conditions that promote matrix deformation indicates
that failure is, for these loading cases, a progressive and continuous process. The term
“progressive failure”, or “damage”, can be used in a macro-mechanical framework
to define the physical processes that result in degradation of composites mechanical
properties, such as plasticity, matrix micro-cracking or a combination of both. In the
present work, “progressive failure” is assumed to be driven by shear mechanisms.

8.2.2 Outline of the Modelling Approach

In [11], Puck and Schurmann discuss an adaptation of the Mohr-Coulomb failure
criterion for predicting composite failure in the transverse matrix compressive/shear:

fmc =
(

τT

ST − µTσn

)2

+
(

τL

SL − µLσn

)2

(8.1)
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In this equation the traction components τT , τL and σn on the potential fracture
plane are computed from stress rotation in the (bc) plane. The (abc) reference is
defined as proposed in [9]. ST and SL are the traction strength on the fracture plane,
µT and µL are the friction coefficients. This criterion was later adopted in [9] where
orthotropic friction coefficients are derived for a composite lamina.

In [2,10] this failure criterion was expressed for 2D and 3D applications, respec-
tively. Since the orientation of the potential fracture plane cannot be known a priori
for the generic multi-axial case, the definition of “potential fracture plane” was pro-
posed in [2], and successfully implemented in FE for numerical applications in [10].
The tractions calculated on this plane are those that maximise the functional part of
Eq. (8.1). For a specimen failed in transverse compression, it can be assumed that
the plane in which cracking and plasticity primarily occur is coincident with the
fracture plane. This implies that the “potential fracture plane” can be used to define
the orientation of a plane on which progressive failure is likely to accumulate in a
composite volume under generic loading conditions. Thus, the plane of progressive
failure is here defined as:⎧⎪⎨⎪⎩ fcr (φ) =

(
τT (φ)

ST − µTσn (φ)

)2

+
(

τL (φ)
SL − µLσn (φ)

)2

φ : fcr
(
φ
)

> fcr (φ)∀φ ∈ [0,π [

(8.2)

In the framework of progressive failure modelling, the plane of micro-damage
development is the potential plane defined by Eq. (8.2). However, Eq. (8.2) does not
predict whether micro-damage has or has not yet initiated, and progressive failure
can be predicted only when further data is available. The required information is
obtained from pure shear loading data. Compressive stress acting perpendicularly
to the progressive failure plane is assumed to delay damage propagation, and the
approach to model these effects will be discussed in the later Sect. 8.2.4 of this paper.

8.2.3 Shear Non-linear Stress-Strain Behaviour

Non-linear shear stress-strain functions are used for modelling material non-linearity
in the generic loading case. The non-linear shear stress-strain curves in the (ab), (bc)
and (ac) planes are required by the model. For the accurate modelling of unloading
situations, data will also be required from cyclic loading-unloading shear test-
ing. The generic non-linear shear stress-strain curve is modelled using incremental
calculation as follows:

∆τel = G0∆γ
τn+1 = τn + f (γ n)∆τel (8.3)

With:

f (γ n) =

∆

(
N

∑
k=1

ak (γ n)k

)
G0∆γ

=

N

∑
k=1

kak (γ n)k−1

G0
(8.4)
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Where the ak coefficients are derived from polynomial data fitting of (τ,γ) exper-
imental data points. The function f (γ) defines the relationship between the tangent
shear stiffness normalised to the initial stiffness and the shear strain. The unloading
path from an arbitrary state is predicted assuming no hysteresis but shear stiffness
reduction with strain. The current strain upon unloading is defined as the additive
sum of a permanent strain γP, and an elastic strain γel :

γ n = γn
el + γ

np (8.5)

When the elastic strain has been fully recovered, at which point the shear stress
has reduced to zero, if the shear strain continues to decrease it is also assumed that
this occurs with no internal stress generated in the material:

∆τel = G0∆γ∣∣γ n
p

∣∣< |γ| < ∣∣γ n
∣∣→ τn+1

un = τn +
(
d0 + d1γ n

)
∆τel

|γ| < ∣∣γ n
p

∣∣→ τn+1
un = τn ≡ 0

|γ| > ∣∣γ n
∣∣→ τn+1 = τn + f (γn)∆τel

(8.6)

In this Eq. (8.6), n is the step of the analysis at which the unloading process
begins; γ n

p is the permanent strain measured upon complete recovery of the elas-
tic strain (γ n

p is defined for τn = 0 upon unloading). This formulation ensures
that the numerical damage process is irreversible. The d0 and d1 parameters are
characterised by measuring the gradual shear stiffness reduction in cyclic loading-
unloading shear testing as discussed in [12]. Figure 8.1 shows a comparison between
the model prediction and experimental results published in [8].

8.2.4 Modelling Effects of Mechanical (or “Internal”) Friction
on Progressive Failure Development

The initiation of fracture in loaded composites is inhibited for superimposed hydro-
static pressure confinement [15], which results in compressive strength increase.
It is assumed here that also progressive failure is affected by friction effects. In the
open literature, composites have been defined as “brittle”, e.g. [2,9,11], or “plastic”,
e.g. [1]. It is worth noting that in Eq. (8.1) two “mechanical” friction coefficients are
defined, whose use is strictly meaningful for modelling brittle behaviour. Ward [18]
defined an “internal stress” for polymers which represents the resistance to molec-
ular flow during inelastic straining. In previously published works that have used
the Mohr-Coulomb theory [2, 9, 11], the values for the (mechanical) friction coef-
ficients were computed from measured compressive strength values and geometry
arguments, i.e. not from tribology arguments. Thus there is no evidence of whether
the friction coefficients used within this theory, when applied to polymer com-
posites, are a representation of mechanical friction effects or of “internal” friction
effects. An “internal friction parameter” ηε is thus defined here, which is used to
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Fig. 8.1 Model prediction vs. experimental results, these are from [8]

scale the amount of progressive failure that develops under confinement for com-
bined compressive/shear loading conditions. The proposed interpretation can justify
the modelling of a damaging plastic material with a Mohr-Coulomb theory based
approach. For ease of implementation the parameter ηε is here defined in the strain
space as:

εV < 0 → γeff = 〈|γel |+ηεεV 〉
εV > 0 → γeff = |γel|

(8.7)

Where 〈 〉 are McCauley brackets and the volumetric strain εV is defined as the
sum of the three extensional strains:

εV = εa + εb + εc (8.8)

A definition for ηε such as in Eq. (8.7) is a practical solution. For instance, the
coupling between the hydrostatic stress and the deviatoric stress field is not explic-
itly accounted for when adopting such a definition. Other definitions are possible
and experimental studies are needed for developing a model of a more fundamen-
tal nature. The function f (γ n), Eq. (8.4), can be applied to predict shear driven
progressive failure in a compressed material as:

f (γ) =

N

∑
k=1

ak
(〈
γeff
〉)k−1

G0
(8.9)
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And the shear stress update procedure takes the following form:

τn+1 = τn + f
(
γ n

eff

)
∆τel (8.10)

The predicted
(
τ,γeff

)
behaviour reduces to the characterised shear stress-strain

curve for the pure shear loading case, in which case εV = 0.

8.2.5 Modelling Progressive Failure in Matrix Dominated Modes

The linear elastic vector stress increment at the current time of analysis is defined
as:

{∆σ}abc = [C]{∆ε}abc {∆σa ∆σb ∆σc ∆τab ∆τbc ∆τac}T (8.11)

In which [C] is the orthotropic stiffness matrix and the notation { }abc is used to
define a vector in (abc) material axes. Assuming small time increments (time-steps)
and noting that Eq. (8.2) is a function of solely total quantities, and when using a
limited number of trial angles [2, 10] the orientation of the plane of cracks nucle-
ation at the current time of analysis can be assumed to be the same orientation that

was predicted at the end of the previous time-step, i.e. φn ∼= φn−1
. Providing that

the time steps are small, as it is the case in explicit FE models, this is an accept-
able approximation. The linear elastic vector stress increment {∆σ}abc is rotated to
the coordinate system (ab′c′), which is defined by a rotation of the (abc) reference

around the a axis of the angle φn−1
:

{∆σ}abc
φn−1

−→ {∆σ}ab′c′

{∆σ}ab′c′ = {∆σa ∆σb′ ∆σc′ ∆τab′ ∆τb′c′ ∆τac′ }
(8.12)

In a similar fashion the current vector strain increment is defined in principal
material axes (abc) as:

{∆ε}abc = {∆εa ∆εb ∆εc ∆γab ∆γbc ∆γac} (8.13)

and it is rotated to the plane of progressive failure:

{∆ε}abc
φn−1

−→ {∆ε}ab′c′

{ε}n
ab′c′ = {ε}n−1

ab′c′ +{∆ε}ab′c′
(8.14)

The non-linear effects are modelled in the rotated reference frame by updating
the relevant numerical shear functions:
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{∆σ̃}ab′c′ = {∆σa ∆σb′ ∆σc′ ∆τ̃ab′ ∆τ̃b′c′ ∆τ̃ac′ }
∆τ̃ab′ = f (γ nab′, eff )∆τel

ab′
∆τ̃b′c′ = f (γ nb′c′ , eff )∆τel

b′c′
∆τ̃ac′ = f (γ nac′, eff )∆τel

ac′

(8.15)

The incremental stress state is defined upon unloading as:

{∆σ̃}ab′c′ = {∆σa ∆σb′ ∆σc′ ∆τ̃ab′ ∆τ̃b′c′ ∆τ̃ac′ }
∆τ̃b′c′ = f

(
d0,bc + d1,bcγ n

b′c′, eff

)
∆τel

b′c′

∆τ̃ab′ = f
(

d0,ab + d1,abγ n
ab′, eff

)
∆τel

ab′

∆τ̃ac′ = f
(

d0,ac + d1,acγ n
ac′, eff

)
∆τel

ac′

(8.16)

The coefficients for the empirical functions f (γ), and the parameters d0 and
d1 are determined from experimental data fitting. Equations 8.15 and 8.16 define
the “damaged” vector stress increment {∆σ̃}ab′c′ (function of the “damaged” shear
stress increments∆τ̃b′c′ , ∆τ̃ab′ and ∆τ̃ac′ ), which is rotated back to principal material
axes (abc):

{∆σ̃}ab′c′
−φn−1

−→ {∆σ̃}abc (8.17)

The “damaged” stress increment {∆σ̃}abc is finally used to update the total stress
state:

{σ}n+1
abc = {σ}n

abc +{∆σ̃}abc (8.18)

As a result of the back-rotation Eq. (8.17) the incremental stress vector {∆σ̃}abc
has five components that are affected by the non-linear effects: component in direc-
tion b and c and all three shear components. The model requires a value for the
internal friction parameter ηε before it can be applied in the generic case. In this
work this will be done by predicting the uni-directional transverse compressive
behaviour of the composite for different assigned values of ηε , iteratively, until a
best match between the numerical and the experimental curves is achieved.

8.2.6 Validation of the 3D Plasticity Model

Comparison between experimental and numerical results is presented in Fig. 8.2
for the case of a T300/914 CFRP UD composite under transverse compression
(transverse shear and transverse compressive experimental stress-strain data for this
material is published in [7]).

The most interesting capability of the model is that it can predict realistic unload-
ing paths in the stress-strain space for the transverse compressive mode, with
associated stiffness reduction.
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Fig. 8.2 Transverse compressive stress-strain behaviour of a T300/914 CFRP UD composite,
experimental curve from [7] and numerical prediction

8.3 Modelling Strain Rate Effects in Compression

8.3.1 Premise and Outline Modelling Approach

Matrix dominated mechanical properties of polymer composites are rate sensitive,
and the pure shear mode appears the most strain rate sensitive mode of deformation
in laminated composites, e.g. [13]. Thus, it can be argued that strain rate sensitivity
in modes other than shear is a 3D effect, due to the fact that the planes of maxi-
mum shear stress are at an angle to the principal planes of material symmetry. For
example, strain rate induced hardening in metals can be explained by the theory of
dislocations. The motion and slipping of dislocations is governed by shear forces at
the lattice scale, e.g. [17]. When the (shear) loading rate increases and overcomes
the rate of recovery, more dislocations are generated and entangle, which is the
reason for strain rate material hardening experimentally observed for these materi-
als. A similar interpretation is typically given for polymers: their micro-structure is
composed of molecular chains which flow with deformation [18].

8.3.2 Shear Strain Rate Dependent Behaviour

Non-linear strain rate dependent functions are used only for the pure shear stress-
strain behaviour when modelling material non-linear strain rate dependent response
in 3D. For applicability of the 3D model, all the three shear stress-strain behaviours
in the (ab), (bc) and (ac) planes, would need characterising under static and dynamic
loading. However this data is seldom available; thus it is here assumed the composite
has same shear strain rate sensitivity when deformed in either (ab), (bc) or (ac)
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shear. The generic strain rate dependent shear law is modelled by using a scaling
function, T (γ̇ n), and incremental calculation as follows:

τn+1 = τn + T (γ̇ n) f (γ n eff )∆τ (8.19)

where f (γ n eff ) is defined in Sect. 8.2.4. γ̇ n is the current shear strain rate, which is
defined as:

γ̇ n =
∆γ
∆ t

(8.20)

In which ∆γ is the shear strain increment at the current time step, ∆ t and T (γ̇) is
a scaling function of shear strain rate, which is characterised using pure longitudinal
static and dynamic stress-strain data, as shown in [12].

8.3.3 Modelling Strain Rate Effects in Matrix Dominated Modes
of Deformation

Strain rate effects are modelled on the plane of maximum shear stress (with friction)
interaction as:

{∆σ̃}ab′c′ =
{
∆σa ∆σb′ ∆σc′ ∆τ̃ab′ ∆τ̃b′c′ ∆τ̃ac′

}
∆τ̃b′c′ = T

(
γ̇ n

b′c′
)

f
(
γ n

b′c′, eff

)
∆τb′c′

∆τ̃ab′ = T
(
γ̇ n

ab′
)

f
(
γ n

ab′, eff

)
∆τab′

∆τ̃ac′ = T
(
γ̇ n

ac′
)

f
(
γ n

ac′, eff

)
∆τac′

(8.21)

Upon unloading the constitutive law is assumed as follows:

{∆σ̃}ab′c′ =
{
∆σa ∆σb′ ∆σc′ ∆τ̃ab′ ∆τ̃b′c′ ∆τ̃ac′

}
∆τ̃b′c′ =

(
d0,bc + d1,bcγ n

b′c′ , eff
)

T
(
γ̇ n

b′c′
)
∆τb′c′

∆τ̃ab′ =
(
d0,ab + d1,abγ n

ab′ , eff
)

T
(
γ̇ n

ab′
)
∆τab′

∆τ̃ac′ =
(
d0,ac + d1,acγ n

ac′ , eff
)

T
(
γ̇ n

ac′
)
∆τac′

(8.22)

The stress increment vector is then rotated back to material principal axes. The
3D rotation results in more components of the stress increment vector that are strain
rate dependent.

8.3.4 Validation of the 3D Strain-Rate Dependent Plasticity Model

Single solid element simulations are conducted at constant strain rate and the
numerical results are compared with the experimental data available in the open lit-
erature, Hsiao et al. [5]. They investigated the effect of strain rate on the mechanical
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Fig. 8.3 Transverse compressive stress-strain numerical and experimental curves for UD
IM6G/3501-6 carbon/epoxy under quasi-static and dynamic loading

compressive properties of IM6G/3501-6 Carbon/Epoxy thick laminates. A compar-
ison between the predicted and the experimental stress-strain curves is shown in
Fig. 8.3.

It is important to note that in this case, both the polynomial coefficients for
the non-linear transverse shear behaviour and the internal friction parameter were
assumed. The results however show that very good match of the experimental
transverse compressive behaviour of the composite at different strain rates can be
obtained. Realistic shear (bc) behaviour was assumed. Despite the proved capabil-
ity of the formulation in predicting 3D strain-rate effects with no extensive need for
data fitting, further detailed testing is deemed necessary for the rigorous validation
of the model.

8.4 Strain-Rate Dependent Energy-Based Damage Mechanics
Approach

A 3D energy based damage formulation was proposed and implemented in LS-
DYNA3D [10] for a composite with non-linear in-plane shear behaviour. The
material model here developed simulates non-linear strain-rate-dependent mate-
rial behaviour in 3D. Thus, the approach for matrix damage propagation described
in [10] is reformulated to account for 3D non-linear and strain-rate dependent mate-
rial response. The dynamic matrix failure criteria, which are used in the present
work to predict onset of matrix damage, are fully discussed in [14].
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The orientation of the fracture plane at matrix failure onset is φ 0
. The linear

elastic vector stress increment {∆σ}abc is rotated to the coordinate system (ab′c′),
which is defined by a rotation of the (abc) reference around the a axis of the angle

φ0
:

{∆σ}abc
φ0

−→ {∆σ}ab′c′

{∆σ}ab′c′ = {∆σa ∆σb′ ∆σc′ ∆τab′ ∆τb′c′ ∆τac′ }
(8.23)

When the criterion for matrix failure is met, the tractions have exceeded the trac-
tion strengths on the potential fracture plane. It was noted in [10] that at onset of
matrix failure, while the energy absorbed due to the non-linear shear behaviour is
proportional to the volume of the specimen, the energy absorbed by the fracture
process is proportional to the area created. Thus only the elastic internal energy
in the element at onset of failure contributes to the matrix fracture process. Stress
increments are then computed for loading as:

fm = 1 →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{∆σ̃}ab′c′ = {∆σa ∆σb′ ∆σc′ ∆τ̃ab′ ∆τ̃b′c′ ∆τ̃ac′ }
∆τ̃ab′ = f

(
γ n

ab′, eff

)
∆τel

ab′

∆τ̃b′c′ = f
(
γ n

b′c′ , eff

)
∆τel

b′c′

∆τ̃ac′ = f
(
γ n

ac′, eff

)
∆τel

ac′

(8.24)

And for unloading as:

fm = 1 →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{∆σ̃}ab′c′ = {∆σa ∆σb′ ∆σc′ ∆τ̃ab′ ∆τ̃b′c′ ∆τ̃ac′ }
∆τ̃ab′ = T (γ̇ab′)

(
d0,ab + d1,abγ 0

ab′, eff

)
∆τel

ab′

∆τ̃b′c′ = T (γ̇b′c′)
(

d0,bc + d1,bcγ 0
b′c′, eff

)
∆τel

b′c′

∆τ̃ac′ = T (γ̇ac′)
(

d0,ac + d1,acγ 0
ac′, eff

)
∆τel

ac′

(8.25)

Where fm = 1 indicates that the failure criterion for matrix compressive failure
is met. The matrix damage driving strain, εmat , is here defined as:

εmat =

〈
σn

b′
〉

σn
b′
εel

b′ sinω+
∣∣∣γel

b′c′ cosλ + γel
ab′ sinλ

∣∣∣ (8.26)

In which 〈 〉 are McCauley brackets, the angles ω and λ are defined in Fig. 8.4
in [10] and:

εel
b′ =

1
2

[
(εb + εc)+ (εb − εc)cos

(
2φ0
)

+ γ el
bc,eff sin

(
2φ0
)]

γ el
b′c′ =

τn
b′c′(

d0,b′c′+d1,b′c′ γ 0
b′c′ , eff

)
Gb′c′

γ el
ab′ =

τn
ab′(

d0,ab′+d1,ab′γ 0
ab′ ,eff

)
Gab′

(8.27)
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With:

γ el
bc, eff =

τ0
bc

Gbc

(
d0,bc + d1,bcγ 0

bc, eff

) (8.28)

In which γ0
bc,eff is obtained from rotation of the strain vector from the plane of

fracture propagation to the principal material axes.
The matrix damage evolution law is defined as proposed in [10]:

dmat = max

⎧⎨⎩0,min

⎧⎨⎩1,ε f
mat

εmat − ε0
mat

εmat

(
ε f

mat − ε0
mat

)
⎫⎬⎭
⎫⎬⎭ (8.29)
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In which ε f
mat is defined as:

ε f
mat =

2Γ
σ0

matLmat
(8.30)

The driving stress at the onset of matrix failure, σ0
mat , is defined as [10]:

σ0
mat =

√(
σn

b′
)2 +
(
τn

b′c′
)2 +
(
τn

ab′
)2

(8.31)

Equation 8.30 indirectly depends on strain rate through the “dynamic matrix
fracture toughness” Γ . This is a function of strain rate defined by assuming that
a relationship of direct proportionality exists between shear traction strengths and
fracture toughness: the same scaling function that was used for predicting the
enhancement of shear strength with strain rate is used for scaling fracture toughness
with strain rate:

Γ = Γb

〈
σ0

b′

σ0
mat

〉2

+ z(γ̇b′c′)Γb′c′

〈
τ0

b′c′

σ0
mat

〉2

+ z(γ̇ab′)Γab′

〈
τ0

ab′

σ0
mat

〉2

(8.32)

This is a simplification and dynamic fracture energies should be experimentally
characterised. However, the formulation proposed here can be used with an arbitrary
scaling function.

The stress vector is then updated on the fracture plane as follows:

{σ̃}n+1
ab′c′ = {σa σb′ σc′ τ̃ab′ τ̃b′c′ τ̃ac′ }n+1 = {σ̃}n

ab′c′ +{∆σ̃}ab′c′ (8.33)

And the relevant stresses are degraded on this plane:(
σn+1

a

)dmat = σn+1
a

(
σn+1

b′
)dmat =

(
1−dinst

mat

〈
σn+1

b′
〉

σ̃n+1
b′

)
σn+1

b′(
σn+1

c′
)dmat = σn+1

c′(
τ̃n+1

ab′
)dmat =

(
1−dinst

mat

)
τ̃n+1

ab′(
τ̃n+1

b′c′
)dmat =

(
1−dinst

mat

)
τ̃n+1

b′c′(
τ̃n+1

ac′
)dmat = τ̃n+1

ac′

(8.34)
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σ̃n+1
}d

ab′c′ , the damaged stress vector defined on the plane of fracture propaga-
tion, is finally rotated back to the lamina axis:

{
σ̃n+1}d

ab′c′
−φ0

−→ {σn+1}
abc (8.35)

In Fig. 8.4, the DM approach for a non-linear material model is illustrated for the
case of static compressive matrix failure.

8.5 Validation of the Impact Damage Model

Experimental impact tests were conducted with a gas-gun on carbon NCF/RTM6
Reduced Size (RS) composite coupons (and effects of target thickness, lay-up,
impact angle and projectile density were investigated). The full set of data generated,
instrumentation used and details of specimen geometry and boundary conditions
during the tests are available in [12]. Numerical simulations of the impact tests
were conducted with LS-DYNA3D. Both target and impactor are simulated using
single-point integration solid elements available in LS-DYNA [4]. The impactor is
simulated as a rigid body and each individual ply of the composite target is simu-
lated using the damage model with features which have been described in this paper.
The definition of a strategy for elements erosion is necessary for successfully sim-
ulating ballistic penetration using Lagrangian FE approaches. Distorted elements
must be eliminated for two main reasons, i.e. (1) Experimental evidence: composite
fragments are driven off the target during penetration; (2) Stability of the numer-
ical analysis: the Lagrangian local reference frame is fixed to the base of a solid
element and is oriented depending on the base nodes numbering and their relative
position. If the elements distort severely and the nodes undergo relative movement
the Lagrangian approach becomes inaccurate [4]. Thus, elements that are too dis-
torted, rather than elements that have “failed”, should be deleted from the mesh. The
criterion for element erosion takes the following form:

ferosion = min
(

f f t ,max(γab,γbc,γac)−Ω
)

= 0 (8.36)

In which Ω is a user-defined parameter, i.e. Ω = 1.25 for the current sim-
ulations. Figures 8.5, 8.6 and 8.7 show a selection of results from the impact
tests and simulations using the proposed model. Very good correlation is obtained
between experimental and numerical ballistic curves. All the composite impact test
coupons were weighed before and after impact. The numerical debris mass loss
was computed based on the number, volume and density of the eroded elements
and compared against the mass loss which was characterized experimentally, see
Fig. 8.7. No effects of lay-up were evident from both tests and simulations for both
the ∼2 and ∼4 mm thick coupons.
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Fig. 8.5 Ballistic tests data and numerical results: effects of projectile density

Fig. 8.6 Comparison of numerical (left) and experimental (right) impact damage areas for an
impact at 260 m/s at 40◦ incidence

8.6 Conclusions

This paper has described the main features and the applicability of a numerical
composite material model suitable for predicting the high velocity impact behaviour
of polymer composites made with UD carbon fibrous reinforcement. The numerical
results from over 70 simulations were reduced in the form of ballistic curves. A
series of conclusions can be drawn:

• A good correlation is obtained between the numerical and the experimental bal-
listic curves for varying target thickness, impact angle, projectile material and
target lay-up.

• The energy absorbed through ballistic penetration does not appear to be affected
by strain-rate effects (Fig. 8.5), but the use of a strain-rate dependent failure
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Fig. 8.7 Experimental and numerical debris mass variation with impact energy for CF cross-ply
(XP) 2 mm RS coupons impacted by a steel ball at normal incidence

and damage formulation can improve the correlation between numerical and
experimental damage areas, especially for higher impact velocities.

• The correlation between the numerical and the experimental matrix damage area
is however not always satisfactory. The experimental damage area is under-
estimated by the model and this is found more evident for thicker specimens.
This is because the smeared formulation applied here cannot predict fibre split-
ting and thus the lifting mechanism of split and broken fibres of the inner layers
pushing on the rear-face ply of the target upon projectile penetration.

• Further numerical simulations could use interface elements.
• The results are strongly dependent on the strategy adopted for element erosion.

However, the results presented in Fig. 8.7 would further validate the strategy
adopted here.

• Meshless methods, such as SPH or partition of unity methods, which do not
require a strategy for element erosion, would improve the performances of
energy based damage models in which failure is predicted by the application
of “directional” (or “modal”) failure criteria.

• Experimental work should be conducted for characterisation of the dynamic frac-
ture toughness of the composite in the failure modes predicted by the failure
criteria that were applied.
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Chapter 9
Progressive Damage Modeling of Composite
Materials Under Both Tensile and Compressive
Loading Regimes

N. Zobeiry, A. Forghani, C. McGregor, R. Vaziri, and A. Poursartip

Abstract A constitutive model is presented for the complete in-plane response of
composite materials within the framework of a previously developed continuum
damage mechanics model, CODAM. While the previous CODAM formulation was
primarily developed to simulate the progression of damage under tensile loading,
the proposed extension is guided by a mechanical analogue model that accounts
for the initiation and propagation of damage mechanisms under both tension and
compression. Calibration of the tensile damage parameters of the model using the
over-height compact tension test (OCT) is presented. Simulations of notched panels
under quasi-static in-plane tension and compression loading are used to demonstrate
the effectiveness of the model in predicting the load-displacement response as well
as the overall damage zone size. Finally, limitations of local smeared crack mod-
els are discussed and the preliminary results of a non-local approach to simulating
damage progression that overcomes such limitations are presented.

9.1 Introduction

As composite materials are being increasingly used in industrial applications, the
ability to confidently predict their response to various types of loading is becoming
ever more important. Whether the interest is to assess the structural integrity of
composites or to quantify their energy absorption capability, it is very desirable to
have predictive analysis tools that capture the physics of the damage mechanisms
and their propagation under general loading conditions including both tensile and
compressive loads.

N. Zobeiry, A. Forghani, C. McGregor, R. Vaziri, and A. Poursartip
Composites Group, Departments of Civil Engineering and Materials Engineering, The University
of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada,
e-mail: reza.vaziri@ubc.ca
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There are several issues related to the behaviour of composite materials that need
to be addressed. One important problem is the prediction of failure and damage
propagation from an imperfection under tension or compression loading. Compos-
ite components are likely to contain many discontinuities acting as stress raiser sites
introduced either intentionally, e.g. cutouts and fastener holes, or unintentionally,
e.g. fabrication defects and imperfections, mismatch between layers of different
fibre orientations, misalignment of fibres and accidental damage. These defects can
act as potential sites for the development and subsequent propagation of cracks.

There are some primary differences between the failure mechanisms in tension
and compression. Tensile failure is most commonly due to fibre breakage and matrix
cracking or yielding. However, depending on the laminate lay-up, failure can also
involve delamination. For compressive failure the primary failure mechanism is kink
banding, which is the formation of matrix cracking or yielding and fibre rotation in
plies having their reinforcement aligned with the loading direction. This mechanism,
along with delamination and off-axis matrix cracking, is most likely to occur in
failure of composites under compression [24, 25].

The reduction of the mechanical properties of composite components caused
by defects and the resulting reduction in their compressive load carrying capacity
have received relatively little attention. Many researchers have undertaken studies
to improve our understanding of compressive failure in composite materials. It is
well recognized that there are two main sources responsible for compressive fail-
ure of composites: weak matrix properties and misalignment of fibres. These two
sources can contribute to a number of different mechanisms as Fleck [7] presented
in his comprehensive study on compressive failure mechanisms of unidirectional
and notched multidirectional composite laminates. In his study, he categorized the
main mechanisms of compressive failure for unidirectional composites as: elastic
microbuckling, fibre crushing, splitting, buckle delamination, shear band forma-
tion and plastic micro-buckling or kinking. Bazant et al. [2] showed that the two
distinct failure mechanisms in compressive failure of unidirectional laminates are
delamination and kinking.

Recently, various micromechanical studies of the kinking failure as the main
compressive failure mechanism of unidirectional composites have appeared in the
literature. Based on the studies of Sutcliffe and Fleck [30] and Fleck et al. [8], a good
understanding of the fracture mechanics aspects of kinking has been gained. These
studies revealed the crack like behaviour of the kink band which was confirmed by
Moran et al. [19] who discovered the phenomenon of band broadening whereby the
damage zone grows under a constant remote stress.

As Shih and Moran [23] observed, there is little evidence of fibre breakage dur-
ing the formation of the kink band. Fibre breakage in compression was observed
after the formation of the first kink band during the band broadening process [26]
when the damage zone, under further application of displacement, propagates into
the undamaged interior materials. On the overall stress-strain response, this broad-
ening of the kink band combined with fibre breakage and splitting results in a plateau
stress after the softening. The various stages in the kinking process recorded by a
video camera [19] are shown schematically in Fig. 9.1.
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Fig. 9.1 Various stages of kink band formation (Reproduced from [19])

A few studies have focused on the micromechanics of damage propagation
in multidirectional composites in compression [24, 25, 28, 29]. Sivashanker [24]
presented a detailed account of micromechanical behaviour of three different multi-
directional lay-ups of carbon-fibre epoxy composites. He identified the compressive
failure process as one that emanates from out of plane micro-buckling of the 0◦ lay-
ers, off-axis layer damage and interface delamination between layers. He observed
that micro-buckling in multidirectional laminates is accompanied by delamination
in the vicinity of the micro-buckled zone. He also reported a similar behaviour for
failure of unidirectional laminates including strain-softening response and kink-
band broadening stage under a constant stress. For this band broadening stage,
he reported a growth of delamination combined with the growth of kink band
height. The constant plateau stress during band broadening stage was also observed
and measured. This constant stress was mainly attributed to the steady state band
broadening in the 0 ◦ layers and steady state delamination crack growth.

A brief review of the literature reveals the lack of a consistent description for
composite materials failure under compression and tension. Only a few comprehen-
sive models capable of simulating the mechanical behaviour of composite materials
during the compressive and tensile failure exist (see for example [13, 14]). While it
has been shown that the energy dissipated during the band broadening stage plays an
important role in the response [32], band broadening phenomena and correspond-
ing plateau stress in compression have been rarely formulated and implemented in
commercial finite element codes. It is known that for a specific geometry and load-
ing condition, the lay-up of the laminate plays an important role in the damage
propagation process, formation of kink band, the plateau stress level and conse-
quently energy dissipated during this process. All these aspects present challenges
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for constructing a comprehensive model capable of capturing the true behaviour of
composite materials under both compression and tension.

Rather than modeling the fracture as a discrete entity, a formidable computa-
tional task when there are a multitude of fracture planes, one can represent fracture
in a smeared manner using continuum damage mechanics (CDM) models. In this
manner fracture can be assumed to be damage propagating within a specific zone
of a representative volume element (RVE) of the material resulting in a reduction of
its stiffness and an overall strain-softening constitutive behaviour (i.e. stress reduc-
tion with increasing strain). Perhaps the best advantage of this method is its ease of
implementation in commercial finite element codes.

It is well known that CDM based constitutive models when implemented in finite
element codes result in numerical solutions that are not objective. In other words,
with successive mesh refinement, damage localizes into a zone of zero volume and
the numerical results fail to converge to a unique solution. To remedy this problem
in a simple and computationally effective way, Bazant and Oh [3, 4] proposed the
crack band theory according to which the product of the area under the stress-strain
curve (in the softening regime) and the characteristic size of the RVE corresponds
to the fracture energy, G f . This fracture energy is assumed to be a material constant.
Therefore, regardless of the choice of the mesh, which is a subjective aspect of
numerical analyses, the overall energy dissipation due to damage and hence G f

must remain constant.
According to the crack band approach, damage localizes into a zone that is one

element in height. This requires one to know the crack path a priori and design a
mesh accordingly. Also the crack band method is applicable when the crack actually
localizes, e.g. in quasi-static loading of notched specimens. In situations where a
well-defined path for the crack propagation does not exist, e.g. in scenarios involving
dynamic loading or quasi-static loading of un-notched specimens, where the damage
pattern is rather diffused the crack band concept ceases to apply [1]. In such cases a
non-local approach is generally recommended. Non-local methods can address the
mesh size dependency problem as well as improve the unrealistic mesh orientation
dependency of the classical smeared crack methods.

In this study, a constitutive model is presented for the complete in-plane response
of composite materials within the framework of a previously developed continuum
damage mechanics model, CODAM [31]. While the previous CODAM formulation
was primarily developed to simulate the progression of damage under tensile load-
ing, the proposed extension is guided by a mechanical analogue model that accounts
for the initiation and propagation of damage mechanisms under both tension and
compression, and load reversals (unloading) in each mode of loading.

The layout of this paper is as follows. Section 9.2 presents a descriptive outline
of the analogue model that forms the physical basis for the new CODAM consti-
tutive formulation. Section 9.3 briefly describes the over-height compact tension
test (OCT) used to calibrate the tensile damage parameters of the model. Simu-
lations of notched panels under tension and compression that are used for model
validation are presented in Sect. 9.4. Section 9.5 outlines the limitations of local
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smeared crack models and offers the preliminary results of a non-local approach to
simulating damage progression that overcomes such limitations.

9.2 Description of the CODAM Model

To help with the development of the constitutive model, notably to account for the
mechanisms under compression, a physically meaningful “analogue model” capable
of simulating the behaviour of composite materials during the failure process in
tension, compression and possible load reversals in each of these modes of loading
is presented. This model consists of simple basic elements such as springs, fuses,
gaps and sliders. The springs simulate the material stiffness which when combined
with the fuses, can represent the failure of a RVE of composite under tension or
compression. On the other hand, gaps and sliders in series with springs simulate the
band broadening stage under compression. The proposed analogue model is shown
in Fig. 9.2.

The model consists of an infinite number of gaps and springs (left part of
Fig. 9.2a), which are in series with a slider element. This collection of elements
is also in parallel with an infinite number of springs and fuses in series (right part
of Fig. 9.2a). These elements are divided into two groups of elements (sub-models),
namely, the Laminate and Rubble sub-models as shown in Fig. 9.2b.

A summary of the analogue model elements is presented here while more details
can be found in references [17, 32, 33]. The laminate sub-model simulates the
behaviour of the intact laminate in the process of damage propagation and rep-
resents the strain-softening behaviour of the composite material under tensile and
compressive loads.

As damage progresses in the laminate, its overall strain-softening response is
different under tension and compression. Under a tensile load, the softening is a
consequence of the reduction in effective area due to fibre and matrix cracking.
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Fig. 9.2 (a) A schematic of the analogue model showing arrangement of basic elements, (b) a
schematic of the analogue model showing the laminate and rubble sub-models
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In compression, on the other hand, this softening occurs due to matrix cracking
or yielding and fibre instability. In addition, the instability and rotation of the
fibres combined with fibre breakage and splitting contribute to the overall soften-
ing behaviour under compression. In fact, in compression, matrix cracking leads to
the instability of fibres which is not the case in tension.

The overall reduction in the laminate tangential stiffness, which leads to the soft-
ening behaviour, has been modeled using fuses and springs. Fuses fail sequentially
upon application of a remote displacement to the laminate sub-model. This results
in the overall stiffness reduction of the laminate sub-model and an ensuing softening
behaviour similar to the composite response under tension.

The rubble sub-model represents the behaviour of the damaged material in com-
pression. Upon reaching the damage initiation strain under compressive loads, the
matrix starts to crack or yield resulting in the formation of multiple cracked surfaces
or rubble. With further damage growth under compression, the friction between the
newly cracked surfaces results in an increase in the load carrying capacity of the
material. This damaged material can continue to carry compressive loads.

The behaviour of the rubble sub-model can be represented with an analogue
model consisting of gap and spring elements to model the compressive load car-
rying response with an increasing stiffness. The gap element is inactive (open)
before damage initiation. After damage initiates, new surfaces form resulting in an
increased stiffness of the damaged material. This is modeled by sequential closure
of the varying sized gaps in compression. By virtue of the gaps remaining open, the
rubble sub-model cannot carry any load in tension.

The slider simulates the damage band (kink band) propagation. The yield strain
is assumed to coincide with the saturation strain of the rubble sub-model. At the
instant of final gap closure, the slider activates, indicating progressive specimen end
shortening (damage zone broadening) under a constant applied load. This results
in the damage propagation into the undamaged interior material and an increasing
damage height for compressive failure.

Together, the Laminate and Rubble sub-models represent the overall response of
the composite in the force-displacement space during progressive damage growth
in tension or compression. Figure 9.3 shows a schematic example of the response
of a RVE under controlled displacement loading based on the analogue model. First
displacement is applied in the tensile mode until fibre and matrix damage occurs
in the RVE. Subsequently the RVE is unloaded and then reloaded in the com-
pressive regime. In this case, the initial reduced modulus (dashed line) compared
to the undamaged modulus (solid curve) is due to the previous damage incurred
in tension. After reaching a saturation state of matrix damage in the RVE, upon
further application of displacement, the damage broadens into the undamaged mate-
rial resulting in the band broadening phenomena and the corresponding plateau
stress. The band broadening then continues up to the point of complete failure (fibre
damage saturation).

The analogue model described above has been used to extend the compression
modeling capabilities of a continuum damage mechanics model (CODAM) previ-
ously developed by Williams et al. [31] for gross damage development in polymeric
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Fig. 9.3 An example of the constitutive response obtained from the proposed analogue model

matrix composites. CODAM is a phenomenological model that smears the material
response (stress-strain behaviour) over a finite RVE of the laminate made up of a
repeating unit or sub-laminate through the thickness and a characteristic size, hc, in
the plane of the laminate. The construction of the model at this scale ensures that:
(1) by considering a sub-laminate the lamina interactions in terms of damage initia-
tion and evolution are implicitly taken into account, and (2) the characteristic planar
length provides a measure of the inherent toughness (or brittleness) of the material
(the smaller the hc the more brittle the material). The latter is also related to the
size of the fully developed fracture process zone (i.e. the height of the damage zone
ahead of a crack in a test configuration that leads to a stable crack growth). In for-
mulating CODAM two sets of curves are defined: one relating the damage variables
to an effective strain, and the other relating modulus reduction to the damage vari-
ables. This results in a strain-softening type stress-strain curve for the characteristic
RVE. Damage variables are defined for each of the principal orthotropic directions
as well as in shear loading, and the damage growth and modulus reduction curves
are unique in each case and sensitive to differences in tension and compression. The
CODAM approach has been designed to be computationally oriented, conceptually
simple and easy to characterize.

The model has been implemented as a user material model in the commercial
finite element code, LS-DYNA, and combined with a modified crack band scheme
to address mesh sensitivity. Its ability to predict the response of composites under
a variety of loading scenarios has been demonstrated elsewhere [16, 17, 31–33].
A simplified version of CODAM has also been successfully implemented in the
commercial implicit finite element code, ABAQUS.

9.3 Model Calibration

For its characterization, the CODAM constitutive model requires some basic input
parameters such as the amount of fracture energies under compression and tension,
the plateau stress and peak stresses in addition to the standard elastic constants. To
obtain some of these parameters, results from experiments such as the over-height
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Fig. 9.4 (a) Configuration of OCT test and (b) scribed lines for the line analysis [18]

compact tension (OCT) [9,18] test are required. Further details on model calibration
can be found in [16, 17, 31–33] while here we focus on the OCT test.

The OCT test, developed by Kongshavn and Poursartip [9], is based on a mod-
ified version of the standard Compact Tension (CT) test. This test, which leads to
a stable growth of damage, has been mainly used to determine the intralaminar
damage and fracture characteristics of composite materials. Figure 9.4a shows a
schematic setup of an OCT specimen.

In order to extract the fracture energy
(
Gf
)
, the position of the crack tip and

hence the crack length need to be measured from these tests. A line analysis tech-
nique has previously been employed [9, 18] to obtain the profile of crack opening
displacement along the crack. Accordingly, a series of horizontal lines that are
scribed on the specimen parallel to the notch plane (as shown in Fig. 9.4b) are used
as references for measuring the displacement profile using photographs taken dur-
ing the test. By comparing the coordinates of points on the drawn lines during the
test to their initial values, and hence measuring the relative local displacements, the
crack opening displacement (COD) profile can be traced. This in turn is used to find
the instantaneous position of the crack tip and thus a measure of the crack length.

During the stable crack growth, the average value of the energy release rate is the
dissipated energy (energy absorbed in the damage process) divided by the projected
area of the crack given by:

Gf =
U∗

Ba
(9.1)

where U∗ is the portion of the external work absorbed in the damage process, B is
the thickness of the specimen and a is the crack length.

Obtaining the above fracture energy release rate along with the height that the
damage grows into (via sectioning) from the OCT test allows one to quantify some
of the CODAM parameters. Since the damage model is associated with a character-
istic size (height, hc) of the RVE, the CODAM parameters are determined such that
the resulting peak stress (obtained independently from a simple tension or preferably
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a 4 point bend test) and absorbed energy during the damage process are consistent
with the measured quantities from the OCT test.

Recently, an advanced image processing technique has been used to extract the
crack length and damage height information from the OCT tests in a more accurate
and less invasive manner. In this method, the specimen is treated with a speckle
pattern and several images of the specimen are recorded during the test using a
camera. These images are then processed by a computer software which produces
the displacement and strain fields as output. This method enables the quantification
of the local displacement/strain fields in the critical positions such as the damage
zone. Figure 9.5 shows an example of the strain field contours that can be extracted
from an OCT test using the image analysis software [12].

Figure 9.6 shows the strain profiles at a section close to the notch tip and perpen-
dicular to the crack line. The strain profiles for two different levels of pin opening

0.2

0.1

x

y

0.0

0.3

Fig. 9.5 An example of the strain field calculated by the image processing software, DaVis [12].
The arrow shows the position of the initial notch in the OCT test [15]

POD = 3.17 mm

POD = 2.86 mm

hc = 20.8 mm 

hc ~ 18 mm 

Fig. 9.6 Longitudinal strain profiles at two different levels of pin opening displacement (POD)
along a vertical line through the damage zone in an OCT test specimen using the image analysis
software, DaVis [12]
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displacement (POD) are shown. Localization of the strains into a zone with a height
of approximately 20.8 mm can be easily identified from this graph as the distance
between the two intersection points. These intersection points differentiate the zone
in which the strains are increasing (damage localization) from the zones in which
the strains are decreasing (unloading in undamaged material). This allows for an
estimate of the height of damage without the need for time consuming sectioning.
The height of damage serves as a key parameter for determining the size of the zone
used for non-local regularization in the numerical simulations (see Sect. 9.5.2).

9.4 Model Validation

9.4.1 Simulation of OCT Test

The OCT test that was used for characterizing some of the model parameters was
also used to validate the performance of CODAM in predicting the behaviour of a
composite structure undergoing damage and fracture under tensile loading. Finite
element simulations of the OCT test were carried out using both the LS-DYNA
and ABAQUS implementations of CODAM. Figure 9.7 compares the predictions
of the applied force versus crack mouth opening displacement (CMOD) with the
corresponding test results for a class of carbon fibre reinforced plastic (CFRP)
laminates with a [45/−45/02/90/02/−45/45]6 layup [18]. In this model, the sub-
laminate elastic properties used are: Ex = 75.0 GPa, Ey = 32.0 GPa, νxy = 0.161
and Gxy = 17.1 GPa. Also, the peak stress as measured from a 4 pt bend test is 460
MPa and the fracture energy release rate G f = 80 kJ/m2 based on the findings of
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Fig. 9.7 Longitudinal strain profiles at two different levels of pin opening displacement (POD)
along a vertical line through the damage zone in an OCT test specimen using the image analysis
software, DaVis [12]



www.manaraa.com

9 Progressive Damage Modeling of Composite Materials 189

the OCT experiment. According to this figure, the numerical predictions agree well
with the experimental results. Simulation results in the form of predicted damage
patterns will be presented in Sect. 9.5.2 within the context of non-local models.

9.4.2 Simulation of Open Hole Plates Under Compression

Soutis and Spearing [29] presented an investigation into the compressive strength
of CFRP laminates. They performed quasi-static compressive tests on panels with
different specimen and notch sizes. In their study they used specimen sizes of
50 × 50 mm and notch diameters ranged from 2.5 to 25 mm resulting in hole-
diameter/width ratios of 0.05 to 0.5.

The material used in this experiment was a quasi-isotropic [(±45/0/90)3]s CFRP
laminate with an approximately 3 mm thickness and elastic properties Ex = Ey = 63
GPa, νxy = 0.315 and Gxy = 24 GPa.

To use CODAM in modeling these experiments, first we need to derive the dam-
age parameters in compression. The damage initiation strain is the strain at which
matrix cracking; fibre rotation and delamination start to propagate. In the experi-
ments by Soutis and Spearing [29] on notched specimens, this strain was measured
to be around 80% of the strain at the peak stress point. The average strain at peak
stress was reported to be almost 1.0%. Therefore, the damage initiation strain can
be estimated to be −0.008 (negative sign implies compression). This value is taken
to be the damage initiation strain for both the fibre and the matrix due to the fact
that matrix cracking and fibre rotation initiate at the same strain level in the kinking
process.

The compressive fracture toughness for a variety of lay-ups for T800 carbon
fibres embedded in Ciba-Geigy BSL 924C epoxy resin was measured by Soutis et al.
[28] to be 40 MPa m1/2. Here we use the same value of fracture toughness for these
panels. This yields a fracture energy of 25.4 kJ/m2.

Sivashanker [24] has performed an experimental study on the compressive
response of the same lay-up and material as in [29], except that he used T300 car-
bon fibres in his study. We can reasonably ignore this difference in the fibre type as
the damage mechanism in these panels is driven mainly by the matrix properties. In
Sivashanker’s work, the plateau stress was reported to be in the range of 100–133
MPa. Here we use a plateau stress of 100 MPa.

Figure 9.8 shows a comparison between the experimental results and the pre-
dicted compressive strengths of notched laminates using the new implementation
of CODAM in LS-DYNA. It can be seen that using the above parameters the
predictions lie well within the experimental bounds. Sensitivities of the strength
predictions to variations in some of the key constitutive parameters in the compres-
sion regime, such as the plateau stress and fracture energy have been carried out and
reported in [32].



www.manaraa.com

190 N. Zobeiry et al.

0.

0.

0.

0.

0.

0.

0.

Ho

N
o

Mi

Ma

Pr

Ex

Pr

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hole Diameter / SpecimenWidth

N
ot

ch
ed

 S
tr

en
gt

h 
/  

U
nn

ot
ch

ed
St

re
ng

th

Min Experiment

Max  Experiment

Present Numerical Prediction

Experimental Result

Present Numerical Prediction

0.60.50.400.30.200 0.1

Fig. 9.8 Comparison of experimental [29] and present numerical strength predictions of open hole
panels under uniaxial compression

9.5 Non-local Approach

9.5.1 Limitations of Local Damage Models

As stated earlier (see Sect. 9.1) the Bazant’s crack band approach used in conjunc-
tion with the local damage model, CODAM, is only applicable to a limited class of
problems. The following are a list of some of these limitations:

• The crack band method is based on the premise that the damage localizes into a
zone with a certain height. This is valid only in quasi-static loading of notched
specimens; otherwise the scaling concept used in the crack band approach does
not apply.

• Crack and damage tend to grow parallel to the mesh orientation. In other words,
the results of the FE simulation using the local crack band formulation leads to
mesh orientation dependent results. As a result, this method can practically be
used only when the crack path is known in advance.

• To achieve more realistic results in terms of local displacements, strain and stress
fields, the height of elements should be close to the actual height of damage
observed in the experiments. For example, using elements that are much coarser
than the damage height result in under-prediction of strain and stress gradients
in the vicinity of the notch. Conversely, by virtue of the required scaling of the
softening portion of the stress-strain curve used in the crack band approach, finer
elements lead to unrealistically large strains in damaged elements.

To overcome the above limitations, other numerical approaches that address the
localization problem, such as non-local regularization, need to be adopted.



www.manaraa.com

9 Progressive Damage Modeling of Composite Materials 191

9.5.2 Non-local Regularization

It is well-known that the local equations governing the behaviour of a strain soften-
ing solid system are ill-posed [1, 5, 22]. As a result, the finite element simulation of
strain-softening materials is not objective and suffers from the so called spurious
localization problem leading to mesh size dependency of the numerical predic-
tions. Various remedies have been proposed in the literature to address this problem.
The non-local approach (e.g. [22]), explicit and implicit gradient formulations [21],
Cosserat continuum (e.g. [6]) and visco-plastic regularization (e.g. [20, 27]) are
among the techniques that render the numerical simulation objective and are known
as localization limiters [10]. Introduction of a length scale and consequently pre-
vention of localization to a zero-width band are common in all the proposed
remedies.

The advantage of the non-local regularization (e.g. [1]) compared with other
techniques is that the introduced length scale is explicitly adjustable. Furthermore,
it is relatively easy to implement this method in finite element codes (specially the
integral form of non-local regularization).

In the integral form of the non-local regularization, the damage parameter (d) is
a function of the average of an appropriate variable over a finite neighbourhood of a
point. It has been shown by Jirasek [10] that the inelastic (damage) strain given by
Eq. (9.2) is a suitable variable for averaging. This results in the damage parameter
being a function of the non-local inelastic strain (Eq. (9.3)):

εd (X) =
∫
ΩX

εd (X)w(X − x)dΩ (9.2)

d (X) = d (ε (X)) (9.3)

where w is the weight function. Averaging is performed around point X over a finite
neighbourhood (ΩX ) and x represents all the points within the domain ΩX . Gauss
distribution or other bell shaped functions are usually assumed for w.

The following is an example of the weight function that is used in the non-local
averaging scheme in LS-DYNA:

w(x) =
[
1 +
(x

l

)p]−q
(9.4)

The parameter l is the actual length scale introduced to the model while p and
q alter the distribution shape. The size of the averaging area directly depends on l
and consequently the predicted height of damage is a function of l. Observations of
OCT test in terms of height of damage (hc), can be used to determine an appropriate
length scale (l) for the non-local averaging. It is important to choose the strain-to-
failure (saturation strain) such that the total energy dissipated in the damage process
is consistent with the value of fracture energy release rate, G f measured from the
OCT test. In a non-local model the latter can be written in the form of Eq. (9.5) [11].

G f = clg f (9.5)
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where g f is the energy release rate density which is the area under the stress-strain
curve, and c is the multiplier which represents the relation between the height of
damage (hc) and the length parameter (l) and is roughly equal to hc/l. The value
of c mainly depends on the definition of the weight function and for the function
defined in Eq. (9.4), it ranges between 2 to 2.5.

Numerical simulations that are based on non-local averaging not only resolve
the mesh size dependency problem but lead to more realistic prediction of the
local strain/stress fields including the size of the damage zone. An added benefit
of the non-local approach is that it improves the mesh orientation bias for damage
propagation direction [1].

The LS-DYNA software provides non-local averaging capability for a select
number of built-in material models. Unfortunately, this tool is currently not avail-
able for either built-in anisotropic damage models or user-defined damage models.
Therefore, in the presented analyses the MAT PLASTICITY WITH DAMAGE
material model which uses a scalar damage model (SDM) for isotropic materials
is adopted.

Figure 9.9 shows the longitudinal strain contours in an OCT simulation of a
[0/±45]4 braided composite material [15] using an effective isotropic Young’s
modulus of 12.5 GPa, peak stress of 110 MPa, and a fracture energy release rate (G f )
of 45 kJ/m2. It can be seen that the height of the zone with localized strain defin-
ing the damage zone is almost constant during the analysis. By changing the length
parameter (l), the predicted height of damage can be adjusted to fit the experimental
measurements.

To illustrate the mesh orientation dependency of local damage models and the
resulting improvement using a non-local damage approach, an example of the OCT
simulation is carried out with an inclined mesh introduced ahead of the notch.

(a

(c)

(b

(d
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Fig. 9.9 Predicted longitudinal strain (εy) contours and crack length values, ∆a, in the OCT
simulation of a [0/±45]4 braided CFRP at various levels of pin opening displacement (POD)
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(a) Using local scalar damage formulation (b) Using non-local scalar damage formu-
lation

Fig. 9.10 Predicted damage/crack pattern in an OCT test

Figures 9.10a, b show the predicted damage/crack pattern in local and non-local
simulations, respectively. It is seen that the non-local averaging can significantly
improve the dependency of the FE predictions on mesh orientation as the crack
follows the expected path (i.e. along the axis of the notch).

9.6 Conclusions

A previously developed continuum damage mechanics based constitutive model,
CODAM, has been further modified to account for the distinct damage mechanisms
that occur under compressive loading of fibre reinforced composite materials. The
proposed extension has been guided by the development of a simple mechanical
analogue model that through special arrangement of basic elements describes the
one-dimensional non-linear response of composite laminates under both in-plane
tension and compression loading.

The calibration of the tensile damage parameters of the model using an Over-
height Compact Tension (OCT) test setup have been discussed. Results presented
here show the efficacy of the model in predicting the overall damage zone size
and force-displacement response of quasi-statically loaded OCT and open hole
compression test panels.

Finally, the limitations of local smeared crack (crack band) approaches in mod-
eling damage propagation and its numerical implications have been discussed. It is
shown that a non-local integral approach is an efficient remedy for problems stem-
ming from the so-called localization and mesh orientation bias that local approaches
suffer from.
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Chapter 10
Elastoplastic Modeling of Multi-phase Metal
Matrix Composite with Void Growth Using
the Transformation Field Analysis
and Governing Parameter Method

Ernest T.Y. Ng and Afzal Suleman

Abstract In this paper, we employ the combined Transformation Field Analysis
(TFA) method and the Governing Parameter Method (GPM) to predict the overall
elastoplastic behavior of multi-phase fibrous composite materials using Gurson-
Tvergaard yield criterion in order to account for the effect of void growth in
the matrix phase. For the homogenization scheme, we employ the TFA method
with concentration factors determined by the Eshelby-Mori-Tanaka (EMT) theory.
Regarding to the stress integration of the governing TFA equations, we employ an
implicit integration scheme, namely the GPM. Furthermore, a necessary condition
for the possible ranges of the governing parameters based on the GPM integra-
tion scheme is derived in a more general setting by including the rate of nucleation
and coalescence within the context of writing the expression of the rate of change
of porosity. To validate our proposed approach, we compare our results to both
numerical and experimental results provided in the existing literature.

10.1 Introduction

A metal matrix fiber-reinforced composite has many advantages over conventional
engineering materials because of its light-weight and good formability under fab-
rication. However, the intrinsic inhomogeneities of fibrous composite materials has
made the prediction of the mechanical behavior of such a material a great challenge
over the past three decades. As described in the preceding paper by Ng and Suleman
[19], the combined TFA-GPM provided a good approximation of determining the
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Técnico, Lisbon, Portugal, e-mail: suleman@ist.utl.pt

197



www.manaraa.com

198 Ernest T.Y. Ng and A. Suleman

overall elastoplastic behavior of multi-phase fiber-reinforced composite materials
based on the von-Mises yield criterion. In this paper, we will employ the com-
bined TFA-GPM approach but with Gurson-Tvergaard yield criterion instead of
von-Mises yield criterion to predict the overall elastoplastic behavior of n-phase
fiber-reinforced composites with isotropic strain hardening.

Elastoplastic modelling of n-phase fiber-reinforced composites (advanced hybrid
composites) has been proposed by many researchers. One elegant method, namely,
the Transformation Field Analysis (TFA) [7] proposed by Dvorak has shown to
have many advantages over the other models within the context of computational
micromechanics. For instance, the algorithm can take account of the microgeome-
try of the fiber phase and is suitable for modelling multi-phase fibrous composites;
it can accommodate with any inelastic constitutive relation, micromechanical model
and uniform overall loading path. More importantly, it is also suitable for 3D mod-
elling of multi-phase fiber-reinforced composite structures within the finite element
method framework. To determine the concentration factors needed by the govern-
ing TFA equations, we invoke the Eshelby-Mori-Tanaka (EMT) theory [3, 8, 17].
However, the integration scheme employed in the original paper written by Wafa
et al. is explicit [1]. Over the past years, implicit integration has shown to have
more advantages over explicit integration in integrating the constitutive equation
within the context of finite element analysis. Moreover, explicit integration even has
complicated the numerical procedures for analyzing multi-phase fibrous compos-
ite material as discussed in the preceding paper. In this paper, the TFA method is
used to predict the overall elastoplastic behavior of n-phase fiber-reinforced com-
posites using Gurson-Tvergaard yield criterion. In order to integrate the overall
TFA governing equations, an implicit stress integration scheme called the Govern-
ing Parameter Method (GPM) [15, 16] is used to replace the explicit integration
scheme employed in the original paper by Wafa et al. In short, this paper has the
following contributions:

1. Extend the widely used von-Mises yield criterion to a more general Gurson-
Tvergaard yield criterion in order to account for the effects of void growth in the
matrix phase;

2. Perform the mathematical analysis to obtain the necessary conditions for the
ranges of the change of the mean plastic strain ∆eP

m and the change of the effec-
tive plastic strain ∆ ēP of the matrix phase within the context of the iterative
algorithm based on the GPM and the Gurson-Tvergaard model;

3. Use the proposed approach to simulate a 4-phase fibrous composite material.

The layout of the paper is as follow: Sect. 10.2 presents the micromechanics
of elastoplastic analysis of multi-phase fiber-reinforced composite materials, this
includes the governing TFA equations and the EMT equations; Sect. 10.3 outlines
the stress integration scheme, this includes a general description to the GPM algo-
rithm, the procedure to apply the GPM to solving the governing TFA equations;
Sect. 10.4 includes the formulation of Gurson-Tvergaard plasticity within the con-
text of GPM. More importantly, a necessary condition for the ranges of the change
of the mean plastic strain ∆eP

m and the change of the effective plastic strain ∆ ēP
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have also been formulated; Sect. 10.5 carries out the evaluation and verification of
the developed computational framework and the results are compared with exper-
imental and computational results presented in the literature. The paper concludes
with closing remarks.

10.2 Micromechanics

10.2.1 Setting the Stage

Consider a composite medium Ω ⊆ R3 which consists of a single matrix phase Ω0

(the subscript ‘0’ denotes the matrix phase henceforth) and n phases of ellipsoidal
fiber phasesΩr where the index ‘r’ running from 1 to n with a total of n+1 phases.
Also, we define the fiber volume fraction as

cr ≡ V (Ωr)
V (Ω)

(10.1)

where V (Ωr) and V (Ω) are the volume of the r-th phase material and the volume
of the composite medium, respectively. Thus, we have

n

∑
r=0

cr = 1 (10.2)

Before delving into any analysis, we assume the following:

1. All phases are assumed to be isotropic and homogeneous
2. The fiber’s shape is assumed to be ellipsoidal
3. The interfaces between the matrix and fibers are assumed to be perfectly bonded

Furthermore, the composite medium that is of interest is assumed to be statistically
homogeneous and the longitudinal axis of the fibers are aligned in the x3 direction
of the x1-x2-x3 Cartesian coordinate system which are randomly distributed over the
entire composite domain. Consequently, we can choose a Representation Volume
Element (RVE) to evaluate both the local and the overall fields [10]. By assuming a
statistically homogeneous composite medium Ω , we have

〈σσσ r〉 =
1

V (Ω)

∫
Ω
σσσ r(xxx)dV (10.3)

〈εεεr〉 =
1

V (Ω)

∫
Ω
εεεr(xxx)dV (10.4)

for the average of the local stress field and strain field of the r-th phase material. The
main reason for considering the average field is because it is almost impossible to
know the exact nonuniform local field, therefore, it is more natural to consider the
average local field. This rationale is applied freely in the field of micromechanics.
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To simplify, the bracket ‘〈〉’ is dropped henceforth. That is, we will denote the exact
local tensor field as TTT r(xxx) and the average local tensor field as TTT r by dropping out
the ‘(xxx)’ for any tensor field unless needed for further clarification. As usual in
micromechanics theory, one can write the overall stress field σ̄σσ (or strain field ε̄εε) as
a linear combination of its relevant local fields as follow:

σ̄σσ =
n

∑
r=0

crσσσ r (10.5)

ε̄εε =
n

∑
r=0

crεεεr (10.6)

The above two sets of equations are jointly referred to as the homogenization
equations.

10.2.2 Governing TFA Equations

In this section, a summary of the governing TFA equations and the EMT equations
is given. For the details in the formulation of the TFA equations and its relevant
issues, we refer to [1,4,6,7]. Generally speaking, the framework of the TFA method
provides three sets of equations, which include the global equations, local equations
and localization equations. These three sets of equations constitute the foundation
of inelastic analysis of n-phase fiber-reinforced composites within the context of
the TFA method. On the other hand, the EMT theory provides the overall elastic
stiffness matrix LLL (or overall compliance matrix MMM) in terms of the phase elastic
stiffness matrix LLLr (or phase compliance matrix MMMr) and the relevant mechanical
concentration factors AAAr (or BBBr) respectively. That is, we have

LLL =
n

∑
r=0

crLLLrAAAr (10.7)

MMM =
n

∑
r=0

crMMMrBBBr (10.8)

and their relevant mechanical concentration factors

AAAr = AAAdil
r AAA0 (10.9)

BBBr = BBBdil
r BBB0 (10.10)

with

AAAdil
r = [III + SSSEsh

r MMM0(LLLr −LLL0)]−1 (10.11)

AAA0 = [c0III + crAAA
dil
r ]−1 (10.12)

AAAr ≡ AAAdil
r AAA0 (10.13)
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and

BBBdil
r = LLLrAAAdil

r MMM0 (10.14)

BBB0 =
[
c0III +∑n

r=1 crBBBdil
r

]−1
(10.15)

BBBr = BBBdil
r BBB0 (10.16)

where SSSEsh
r is the Eshelby tensor of the r-th phase material and III is the 6×6 identity

matrix. Note that AAAdil
0 = AAA0 = BBBdil

0 = BBB0 = III.
In the context of TFA method, the localization rules with only elastic-plastic

deformation are given by

εεεr = AAAr ε̄εε−
n

∑
s=0

DDDrsMMMsλλλ p
s (10.17)

σσσ r = BBBrσ̄σσ −
n

∑
s=0

FFFrsLLLsµµµ p
s (10.18)

where λλλ p
r and µµµ p

r are the local eigenstress and eigenstrain fields regarding to plastic
deformation respectively. According to the terminology used in Dvorak’s papers, the
eigenstrain and eigenstress fields described above are jointly called the transforma-
tion fields. The main assumption made by Dvorak and Benveniste is the piecewise
uniform distribution of the eigenfields over the phases. This assumption is based on
the premise of the existence of uniform fields in heterogeneous media [6]. More-
over, DDDrs and FFFrs are the corresponding transformation concentration factors which
are given as follows:

DDDrs = (III −AAAr)(LLLr −LLL)−1(δrsIII− csAAA
T
s )LLLs (10.19)

FFFrs = (III−BBBr)(MMMr −MMM)−1(δrsIII− csBBB
T
s )MMMs (10.20)

for any multi-phase system. Here δrs is the Kronecker delta and AAAT
r and BBBT

r are the
transpose of AAAr and BBBr respectively. The global equations within the context of the
TFA are given as follows:

ε̄εε = MMMσ̄σσ + µ̄µµ p (10.21)

σ̄σσ = LLLε̄εε+ λ̄λλ p
(10.22)

where λ̄λλ and µ̄µµ are the overall eigenstress and eigenstrain corresponding to plastic
deformation, respectively. Likewise, the local equations are given as follows:

εεεr = MMMrσσσ r + µµµ p
r (10.23)

σσσ r = LLLrεεε r +λλλ p
r (10.24)

with λλλ p
r and µµµ p

r denote the volume-averaged phase eigenstress and eigenstrain, cor-
responding to phase r, respectively. Moreover, the piecewise approximation of the
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overall eigenstress λ̄λλ p
and eigenstrain µ̄µµ p are given as follow:

λ̄λλ =
n

∑
r=0

crAAA
T
r λλλ

p
r (10.25)

µ̄µµ =
n

∑
r=0

crBBB
T
r µµµ

p
r (10.26)

In this paper, the only eigenstrain is the plastic strain for the matrix phase.
Customary, we write µµµ p

0 = εεε p
0 and note that µµµ p

r = λλλ p
r = 000 for r = 1,2, . . . ,n.

Consequently, we have

λ̄λλ p
= c0λλλ p

0 (10.27)

ε̄εε p = µ̄µµ p = c0µµµ p
0 = c0εεε p

0 (10.28)

10.3 GPM Algorithm

In this section, a description of the GPM to integrate the governing TFA equations
is presented. The basic idea of the governing parameter method is to set up a gov-
erning nonlinear equation in terms of one variable (i.e. the governing parameter).
For more details in the general procedures of the GPM, see references [15] and [2].
The general steps of the GPM include the following:

Step 1 Select a governing parameter p
Step 2 Express all the unknown quantities in terms of the governing parameter p
Step 3 Solve g(p) = 0
Step 4 Update all the quantities
Step 5 Evaluate the consistent tangent moduli as needed

In the following, we provide the general structure of the computational algorithm
for the GPM. Since all the stress integration schemes are mostly designed for use
within the context of finite element method, all quantities at time step t are assumed
to be known in a priori before starting the stress integration algorithm in time step
t +∆ t. We also have to invoke the governing TFA equations to convert between the
global and local fields. When analyzing multi-phase fiber-reinforced composites,
the governing TFA equation are invoked twice. The first time, the TFA equations
are used to convert the given global elastic trial stress t+∆ t σ̄σσE into the local elastic
trial stress t+∆ tσσσE

0 for the matrix phase. If the yield function is greater than zero
under this elastic trial stress, then the local stress integration reverts the updated
matrix stress t+∆ tσσσ0 back to the updated yield surface. In addition, all other internal
variables have to be updated at the end of the time step t +∆ t. With this updated
local stress, the governing TFA equations is invoked again to obtain the updated fiber
stress t+∆ tσσσ r. Finally, the basic micromechanics equations are used to determine
the updated overall stress t+∆ t σ̄σσ or strain t+∆ t ε̄εε , as needed. In addition, since our
analysis assumes that solely the matrix phase undergoes plastic deformation, all the
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stress fields, strain fields and internal variables are referred to the matrix phase when
dealing with the stress integration algorithm.1

10.4 Gurson-Tvergaard Model in GPM

In this section, a detailed formulation of the Gurson-Tvergaard plasticity within the
framework of GPM is presented.2

10.4.1 Gurson-Tvergaard Yield Criterion

In order to account for voids inside the matrix phase, Gurson provided a yield crite-
rion that takes care of the porosity effect. Later on, Tvergaard modified the original
Gurson yield criterion which gave a more general form of yield criterion for mod-
elling porous rate-independent plasticity [22, 23]. Further developments based on
the Gurson-Tvergaard model have been reported by Niemi and Zhang [20]. For a
numerical formulation of Gurson-Tvergaard model using the GPM, we refer to [16].
The yield function F of the Gurson-Tvergaard model is given by

F (J2,σm) =
1
2

SSS : SSS− 1
3

[
2 f ∗q1 cosh

(
3q2σm

2σ̂y

)
−1−q2

3( f ∗)2
]
σ̂2

y (10.29)

where f ∗ is the porosity parameter, σm is the mean stress, SSS is the deviator stress
tensor, σ̂y is the yield stress and q1, q2, q3 are material parameters. Note that the
symbol ‘:’ represents a double contraction of SSS, that is SSS : SSS = Si jSi j. Also, when
f ∗ = 0, this yield criterion becomes the von-Mises yield criterion. Furthermore, f ∗
is a function of the void volume fraction f , critical void volume fraction fc and f f

which is the value of f at material failure. Therefore, f ∗ is given by

f ∗ =

⎧⎪⎨⎪⎩
f if f ≤ fc

fc + Kf ( f − fc) if fc < f ≤ fF

fF if f > f f

(10.30)

where

Kf =
1/q1 − fc

f f − fc
(10.31)

1 The subscript ‘0’ for the matrix phase will be dropped henceforth for the sake of clarity in this
section.
2 In the following formulation, ‘eee’ will be used instead of ‘εεε’ to denote all strain relative fields
such as plastic strain so as to keep the symbols consistent with the original GPM formulation by
Kojić.
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fF =
q1 +
√

q2
1 −q3

q3
(10.32)

In this paper, we restrict the damage analysis by only considering the rate of void
growth ḟG, consequently, the rate of change of porosity is equal to the rate of void
growth, that is ḟ = ḟG where

ḟG = (1− f )ėP
V (10.33)

Moreover, ėP
V is the rate of plastic volumetric strain and ˙̄eP is the rate of effective

plastic strain. In this paper, we only consider ḟG. Next, we divide the stress tensor
at time t +∆ t into trial deviator stress SSSE and the trial mean stress σE

m .

t+∆ t SSSE = 2Gt+∆ teee′E (10.34)
t+∆ tσE

m = cm
t+∆ t eE

m (10.35)

where G is the shear modulus and eee′E is the trial deviator strain tensor. On the other
hand

cm =
E

(1−2ν)
(10.36)

with E be the elastic modulus and ν be the Poisson’s ratio and eE
m is merely the

elastic counterpart of the total mean strain em where

em =
1
3

eV (10.37)

and eV is the volumetric strain and it is sometimes called the first invariant of strain
tensor.

Next, we write the total deviatoric stress and the total mean stress in terms of
plastic strain and mean plastic strain:

t+∆ t SSS = t+∆ t SSSE −2Gt+∆ t∆eee′P (10.38)
t+∆ tσm = t+∆ tσE

m − cm∆eP
m (10.39)

By using the flow rule, we have

t+∆ t e′Pi j = ∆λ t+∆ t Si j (10.40)

∆eP
m =

∆λ
3

t+∆ tF ′ (10.41)

where

t+∆ tF ′ ≡ t+∆ t
(
∂F

∂σm

)
= q1q2

t+∆ t σ̂y
t+∆ t f ∗ sinh

(
3q2

t+∆ tσm

2t+∆ t σ̂y

)
(10.42)

and ∆λ is the plastic multiplier. Substituting e′Pi j into the deviatoric stress-strain
relation and obtain
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t+∆ t SSS =
t+∆ t SSSE

1 + 2G∆λ
(10.43)

Also, by writing the rate of change of porosity equation into the incremental form,
we obtain

∆ f = 3(1− t+∆ t f )∆eP
m + A∆ ēP (10.44)

where A = A1 + A2. Likewise, for the equivalence of plastic work, we have

σσσ : ∆eeeP = (1− f )σ̂y∆ ēeeP (10.45)

with
t+∆ t σ̂y = t+∆ t σ̂y(t ēP +∆ ēP) (10.46)

After expanding the term σσσ : ∆eeeP, we rewrite the equivalence of plastic work at the
end of the time step as

∆λ t+∆ t SSS : t+∆ t SSS + 3t+∆ tσm
t+∆ t eP

m = (1− t+∆ t f )t+∆ t σ̂y∆ ēP = 0 (10.47)

Then, defining the functional P as

t+∆ tP ≡ ∆λ t+∆ t SSS : t+∆ t SSS + 3t+∆ tσm
t+∆ t eP

m − (1− t+∆ t f )t+∆ t σ̂y∆ ēP (10.48)

Clearly, P = 0 has to be satisfied at the end of all time steps by definition. Likewise,
the yield function has to be equal to zero at the end of all time steps for plastic
loading, that is t+∆ tF (t+∆ t SSS, t+∆ tσm, t+∆ t σ̂y,

t+∆ t f ) = 0 or explicitly,

1
2

t+∆ t SSS : t+∆ t SSS−
t+∆ t σ̂2

y

3

[
2t+∆ t f ∗q1 cosh

(
3q2

t+∆ tσm

2t+∆ t σ̂y

)
−1−q2

3(
t+∆ t f ∗)2

]
= 0

(10.49)
Up to this point, we have presented all the relevant equations for the Gurson-

Tvergaard model. In summary, we have to solve two nonlinear algebraic equations
for every time step.

t+∆ tP(∆ ēP, ∆eP
m) = 0

t+∆ tF (∆ ēP, ∆eP
m) = 0

where ∆ ēP and ∆eP
m are the two unknowns (where ∆ ēP is the governing parameter).

After solving for ∆ ēP and ∆eP
m, we can determine ∆ f and then f ∗. Furthermore, we

can obtain F ′, ∆λ , SSS and σm. With these variables determined, one can obtain the
updated local stress for all phases using the TFA equations.

10.4.2 Newton’s Method

For the Gurson-Tvergaard model, there is a system of two nonlinear equations,
namely t+∆ tP = 0 and t+∆ tF = 0. That is, we have two unknowns at the end of
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each time step, namely ∆eP
m and ∆ ēP. There are many techniques to solve such a sys-

tem. Here, we employ the Newton’s method. Note that in the original Kojić’s paper,
the author uses the bisection method to solve for the system of equations. Although
Newton’s method is more computational demanding since it needs to evaluate the
Jacobian matrix at every iteration, it does converge with a quadratic convergence
rate provided that good initial values are given. Next we rewrite the two governing
equations in the form that is ready for applying Newton’s method algorithm.

{
∆eP

m
(i+1)

∆ ēP(i+1)

}
=

{
∆eP

m
(i)

∆ ēP(i)

}
−

⎡⎢⎢⎢⎣
∂P

∂ (∆eP
m)

∂P

∂ (∆ ēP)

∂F

∂ (∆eP
m)

∂F

∂ (∆ ēP)

⎤⎥⎥⎥⎦
−1{

P(∆eP
m

(i), ∆ ēP(i))
F (∆eP

m
(i), ∆ ēP(i))

}

(10.50)
In order to start the iterations, we need to determine the four partial derivatives,
namely ∂P

∂ (∆eP
m) , ∂P

∂ (∆ ēP) , ∂F
∂ (∆eP

m) and ∂F
∂ (∆ ēP) at every step ‘i’ and are given in the

appendix.

10.4.3 Ranges of ∆eP
m and ∆ ēP

The bisection method and the Newton’s method need an initial approximation in
order to start the iteration. However, if we are able to narrow the possible range
of the initial guess, it will definitely save both time and effort. In this section, we
will try to minimize the possible range of ∆eP

m and ∆ ēP. In principle, both ∆eP
m

and ∆ ēP can be any real number. However, in order to make physical sense, these
two variables are subject to some restrictions. The most obvious one is ∆ ēP ≥ 0 by
definition. On the other hand, we need to determine the range of ∆eP

m which is less
obvious.

In the following argument, our discussion is based on the loading phase, that is
∆λ > 0. According to Kojić’s paper [16], the rate of change of porosity is written as

ḟ = ḟG + ḟN + ḟC (10.51)

which is sum of the rate of void growth ḟG, nucleation ḟN and coalescence ḟC.

ḟG = (1− f )ėP
V (10.52)

ḟN = A1 ˙̄eP (10.53)

ḟC = A2 ˙̄eP (10.54)

where A1 and A2 are material parameters and can be functions of internal variables.
If we let A = A1 + A2, then we have

ḟ = (1− f )ėP
V + A ˙̄eP (10.55)



www.manaraa.com

10 Elastoplastic Modeling of Multi-phase Metal Matrix Composite 207

First of all, the increment of porosity ∆ f has to be nonnegative, that is

∆ f =
3(1− t f )∆eP

m + A∆ ēP

1 + 3∆eP
m

≥ 0

From this inequality, it follows immediately that ∆eP
m �= − 1

3 in any event. Also,
recall the following important relations:

∆λ =
3∆eP

m

q1q2
t+∆ t σ̂y

t+∆ t f ∗ sinh
(

3q2
t+∆tσm

2t+∆t σ̂y

) > 0

t+∆ tσm = t+∆ tσE
m − cm∆eP

m

Since ∆λ has to be greater than zero, it implies that ∆eP
m and t+∆ tF ′ must have the

same sign. But this further implies that ∆eP
m and t+∆ tσm must have the same sign.

Up to this point, ∆ ēP and ∆eP
m are subject to the following constraints:

1. ∆ ēP ≥ 0
2. ∆eP

m �= − 1
3

3. ∆eP
m and t+∆ tσm must have the same sign

4. ∆ f = 3(1− t f )∆eP
m +A∆ ēP

1+3∆eP
m

≥ 0

5. t+∆ tσm = t+∆ tσE
m − cm∆eP

m

Before we start examining the possible values of ∆ ēP and ∆eP
m, let us pick out the

known quantities since these are the known values before entering the iterations. The
known quantities are t f , A, t+∆ tσE

m and cm. In general, t f ≥ 0, A ≥ 0 and cm > 0.
However, t+∆ tσE

m can be negative, zero or positive depending on the type of loading.
So, let us examine t+∆ tσE

m first since the sign of t+∆ tσE
m will put further restrictions

on ∆eP
m.

The first case is σE
m > 0 and will lead to the following theorem:

Theorem 10.1. Suppose that σE
m > 0, then there exists ∆eP

m > 0 such that σm > 0.
Moreover, we have the following inequality:

0 < ∆eP
m <

σE
m

cm
(10.56)

Proof. Follow the properties of real numbers and the fact that ∆λ > 0. That is,
∆λ > 0 implies that both σm and ∆eP

m must have the same sign. Since σE
m > 0

and ∆eP
m cannot be negative or equal to zero, or otherwise we have ∆λ ≤ 0. Con-

sequently, both σm and ∆eP
m have to be positive. The existence of such a ∆eP

m is
because of the completeness of real numbers [24]. This theorem simply states that

our initial guess for ∆eP
m has to lie in between 0 and σE

m
cm

in order to enable a solution

if σE
m > 0. �

The second case is σE
m = 0 which are usually consequences of applying pure

shear loading on an isotropic materials. In this case, we have σm = −cm∆eP
m. Since
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∆λ has to be positive for plastic loading, therefore the only choice is ∆eP
m = 0,

which implies σm = 0. In this case, we have ∆ f = A∆ ēP. But then we have arrived

an undetermined form for ∆λ which is ∆λ → 0
0 . Thus, the formula ∆λ = 3∆eP

m
F ′ is

no longer valid in this case. Therefore, we expect ∆λ is no longer a function of ∆eP
m

and hence, ∆λ = ∆λ (∆ ēP). Thus, we have the following theorem:

Theorem 10.2. Suppose that σE
m = 0, then we have the following form for P and

F :

t+∆ tP = ∆λ t+∆ t SSS : t+∆ t SSS− (1− t+∆ t f )t+∆ t σ̂y∆ ēP (10.57)

t+∆ tF =
1
2

t+∆ t SSS : t+∆ t SSS +
t+∆ t σ̂2

y

3
[2q1

t+∆ t f ∗ −1− (q3
t+∆ t f ∗)2] (10.58)

Moreover, we have

∆λ = R
∆ ēP

t+∆ t σ̂y
(10.59)

where

R =
3(1− t+∆ t f )

2[1 +(q3
t+∆ t f ∗)2 −2q1

t+∆ t f ∗]
(10.60)

Proof. Since σm = 0, therefore cosh
(

3q2
t+∆tσm

2t+∆t σ̂y

)
= 1. Substitute these two relations

into the expressions of P and F of Gurson-Tvergaard model to obtain the results.
To show that ∆λ = R ∆ ēP

t+∆t σ̂y
, simply set the expressions for P and F equal to zero

and combine the two expressions. That is, we have

t+∆ t SSS : t+∆ t SSS =
2t+∆ t σ̂2

y

3
[1 +(q3

t+∆ t f ∗)2 −2q1
t+∆ t f ∗]

follow from the expression F = 0. Then substitute t+∆ t SSS : t+∆ t SSS into the expression
P = 0 to solve for ∆λ . �

However, if t f = 0 and A = 0, then ∆ f = 3∆eP
m

1+3∆eP
m

and we have back to von-Mises
case and this leads to the following corollary of the above theorem:

Corollary 10.1. Suppose that t f = 0, A = 0 and σE
m = 0, then we have the following

form for P and F :

t+∆ tP = ∆λ t+∆ t SSS : t+∆ t SSS− t+∆ t σ̂y∆ ēP (10.61)

t+∆ tF =
1
2

t+∆ t SSS : t+∆ t SSS+
1
3

t+∆ t σ̂2
y (10.62)

Moreover, we have

∆λ =
3∆ ēP

2t+∆ t σ̂y
(10.63)

Proof. The proof is by setting t+∆ t f and t+∆ t f ∗ equal to zero in the expression
of R. �
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The last case is σE
m < 0. In this situation, we must have ∆eP

m < 0 or otherwise
σm and ∆eP

m will have different signs which lead to ∆λ < 0. But this simply implies
that σE

m < cm∆eP
m. Then have the following theorem.

Theorem 10.3. Suppose that σE
m < 0, then there exists ∆eP

m < 0 such that σm < 0.
Moreover, we have the following inequality:

σE
m

cm
< ∆eP

m < 0 (10.64)

Proof. The proof follows from previous inequality. �
This further leads to an important theorem:

Theorem 10.4. Suppose that σE
m �= 0, then there exists ∆eP

m such that the following
inequality holds.

0 < |∆eP
m| <

|σE
m |

cm
(10.65)

Proof. The proof follows directly from the consequences of Theorems 3.1 and 3.3.
�

Now we have the following preliminary conclusion: σm and ∆eP
m must have the

same sign as σE
m . Next we try to examine how the range of ∆eP

m affects the range of
∆ ēP. Since ∆eP

m �=− 1
3 , we can divide into four different cases, which are ∆eP

m <− 1
3 ,

− 1
3 < ∆eP

m < 0, ∆eP
m = 0 and 0 < ∆eP

m.
For the case that ∆eP

m < − 1
3 , then 1 + 3∆eP

m and 3(1− t f )∆eP
m are both less than

zero which further implies

3(1− t f )∆eP
m + A∆ ēP ≤ 0

⇒ 3(1− t f )|∆eP
m| ≥ A∆ ēP

If A > 0, then

∆ ēP ≤ 3(1− t f )|∆eP
m|

A
(10.66)

For the case that − 1
3 < ∆eP

m < 0, then 1+3∆eP
m > 0 and 3(1− t f )∆eP

m < 0. Hence,
we have

3(1− t f )∆eP
m + A∆ ēP ≥ 0

⇒ 3(1− t f )|∆eP
m| ≤ A∆ ēP

If A > 0, then
3(1− t f )|∆eP

m|
A

≤ ∆ ēP (10.67)

However, if A = 0, then the expression 3(1− t f )|∆eP
m| ≤ A∆ ēP is not valid, which

implies that we cannot choose such an ∆eP
m between − 1

3 and 0. For 0 ≤ ∆eP
m, we

have 3(1− t f )∆eP
m +A∆ ēP ≥ 0. Consequently, ∆ f ≥ 0 is automatically satisfied for

0 ≤ ∆eP
m.
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In summary, the range of ∆eP
m is strongly depended on the sign of σE

m . Based on
the restriction on ∆eP

m, the range of ∆ ēP, is then further restricted by the criterion
∆ f ≥ 0. Thus, we obtain the range of ∆eP

m and ∆ ēP for the Gurson-Tvergaard model
in the governing parameter method algorithm.

10.5 Verifications and Examples

10.5.1 Test Cases

In this section, an evaluation and verification of the modelling framework is per-
formed. The accuracy of the model is compared to results in the literature. Moreover,
the yield curve for the models employed here has the form:

σ̂y = σyv + h(ēP)q (10.68)

where σyv is the yield stress of the matrix phase at the original state. Also, h and
q represent the strength coefficient and the work-hardening exponent, respectively.
From the definition of the plastic modulus EP, we have

EP =
dσ̂y

dēP = qh(ēP)q−1 (10.69)

for the proposed test cases. Note that Gurson yield criterion is a special case of the
Gurson-Tvergaard yield criterion with q1 = q2 = q3 = 1.0. Moreover, the critical
void volume fraction is assumed to be fc = 0.05 and the failure void volume fraction
is taken as f f = 0.315.

In Table 10.1, four different fiber-reinforced composite materials are shown. The
numerical values for the properties of composite materials have been taken from
the literature. For the abbreviations used in Table 10.1, the first letter (or the first
two letters with the second letter in lower case) relates to the authors. For instance,
‘JLS’ represents the paper written by three authors Ju et al.; ‘Ll’ represents the paper
written by Llorca. With reference to the shapes, the following abbreviations, ‘S’, and
‘PS’ represent sphere and prolate spheroid, respectively. In addition, ‘ζ ’ denotes the
aspect ratio.

10.5.1.1 Ju and Lee 2000

According to the paper by Ju and Lee [11], the predicted the overall yield crite-
rion for the fiber-reinforced composite is based on the ensemble-volume averaging
process. As a results of this approach, they used the classical plasticity theory to
predict the overall elastoplastic response of the composite material as an effective
yield criterion is obtained. This is certainly different from our approach which only
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Table 10.1 Properties table

JLS PA JL1 JL2 Ll

Em [GPa] 70 73 55.8 68.3 71.8
νm 0.3 0.33 0.32 0.33 0.33
E f [GPa] 450 485 397 490 450
ν f 0.2 0.2 0.2 0.17 0.17
σyv [MPa] 300 220 87.8 250 169
h [GPa] 1,000 370 972 137 463.24
q 0.5 0.3 0.55 0.55 0.39252
c f 0.15 0.20 0.20 0.20 0.06,0.13
Shape PS S S S S
ζ 3 1 1 1 1
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Fig. 10.1 Results: Biaxial Loading, Ju and Lee 2000

requires the matrix phase to satisfy the classical plasticity theory. Also, Ju and Lee
proposed an interfacial debonding process which is governed by the mean stress of
the matrix phase while the damage evolution is governed by the Weibull interfacial
strength parameter [9, 18]. Also, they present a comparison with an experimental
study documented by Llorca in 1991. We compare our results to both Ju and Lee’s
results (Fig. 10.1) and Llorca’s results (Fig. 10.2).
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Fig. 10.2 Results: Llorca 91 (experimental)

10.5.1.2 Denda, Weng and Zheng 2003

Denda et al. proposed a method that combined the homogenization scheme with the
finite element analysis to examine the influence of the debonding angle to the over-
all elastoplastic behavior of fiber-reinforced composites. According to the paper, the
debonding angle is the half-angle of the entire debonding measured from the axis of
symmetry [5]. Furthermore, the authors assumed the entire composite to consist of
three phases, namely, the fibers, cracks and matrix. Recalling the micromechanics
theory, one can relate the local strain of the fibers to the local strain of the matrix
using the strain concentration factors. In this case, their model proposed two strain
concentration factors, namely the fiber strain concentration factor and the dam-
aged zone (cracks) strain concentration factor. These strain concentration factors
are approximated by a complex-variable solution proposed by Toya [21]. Note that
the solution obtained from Toya is restricted to a circular inclusion embedded within
an infinite matrix medium. On the other hand, the overall nonlinear behavior of the
composites is predicted by the secant-modulus approach. In addition, the authors
used ANSYS finite element software to study the effect of the debonding angle to
the material properties of the composites. The material properties of this model are
given in Table 10.1 and the results are plotted in Fig. 10.3.
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Fig. 10.3 Results: Denda, Weng and Zheng 2003

10.5.1.3 Ju, Liu and Sun 2003

Here, we compare two material models with our proposed model. The first material
is an aluminum alloy particle-reinforced composite. The fibers are prolate spheroids
with aspect ratio equal to 3.0 (i.e. ζ = 3.0). In this paper, the authors proposed
an elastoplastic damage model to predict the partial debonding process of metal
matrix composites under elastoplastic deformation [12]. The governing parameter
of the damage process is the average particle stress. That is, once the average particle
stress attained to a certain level, the evolution of damage starts. Note that the only
difference between the model in Ju and Lee’s and Ju, Liu and Sun’s papers is the
consideration of the partial debonding evolution. However, the damage evolution is
governed by the Weibull statistics in both cases. In addition, Ju, Liu and Sun also
compared their model to experimental data provided in Papazian and Adler’s paper.
In this simulation, we will employ the GPM algorithm to integrate the governing
TFA equations using both the von-Mises and Gurson’s yield criterion. Only the
isotropic hardening rule is considered. The material properties of the composite are
given in Table 10.1 and the results are presented in Fig. 10.4.

The second material is a SiC particulate-reinforced 5456 aluminum alloy com-
posite used in Papazian and Adler’s experimental results. The inclusion shape is
assumed to be spherical. The material properties of the composites are given in
Table 10.1 and the results are plotted in Fig. 10.5.
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10.5.1.4 Ju, Liu and Sun 2006

The material considered in this section is the same as in the case of Ju and Lee’s,
however, the inclusion shape is spherical. In the paper by Ju, Liu and Sun 2006, the
authors proposed a new particle-matrix interfacial debonding model to predict the
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Fig. 10.6 Results: Ju, Liu and Sun 2006

partially debonding process of metal matrix composites under elastoplastic defor-
mation [13, 14]. The governing damage parameters are based on four different
debonding modes while the damage evolution is based on the Weibull statis-
tics. These modes are governed by the so-called “interfacial damage parameters”.
According to the authors, the interfacial damage parameter measures the reduction
of elastic stiffness in certain directions. Quantitatively speaking, it is the ratio of
the projected damaged area to the original interface area in a certain direction. For
results, see Fig. 10.6.

10.5.2 Discussion on the Evaluation Process

The combined TFA-GPM method framework provides good agreement with the
results presented in the literature. More importantly, the evaluation and verification
procedure demonstrated the versatility, capability and flexibility of the proposed
elastoplastic modelling framework formulated and implemented in this paper.

In the paper by Ju and Lee 2000, the authors compared their model to Zhao
and Weng’s model under uniaxial and biaxial loading. In addition, Ju and Lee also
compared the results produced by their model to an experimental result given by
Llorca in 1991. In the above simulation, we compared our model to Ju and Lee’s
results, Zhao and Weng’s results and Llorca’s experimental results. As shown in
Fig. 10.4, our results for the von-Mises case and Gurson-0.02 case lie between the
Ju and Lee’s perfectly bonded curve and Zhao and Weng’s perfectly bonded curve.
On the other hand, the Gurson-0.08 curve lies between the upper bound and lower



www.manaraa.com

216 Ernest T.Y. Ng and A. Suleman

bound of Zhao and Weng’s results. Note that in any event, our results have shown
to be stiffer when compared to Ju and Lee and Zhao and Weng’s numerical models
for the same reasons as described previously. However, as shown in Fig. 10.2, our
results show good agreement when compared to Llorca’s experimental result.

When compared to Denda, Weng and Zheng’s secant model, our results (von-
Mises, Gurson-0.02 and Gurson-0.08) have shown that we have a lower overall yield
stress on the composite. Also, the overall stress-strain curve predicted by our models
are stiffer than Denda, Weng and Zheng’s secant model.

In the case of Ju, Liu and Sun’s model, we compared our results using prolate
spheroidal shape fibers with ζ = 3.0 and spherical shape fibers. In general, our
results lie between their upper bound (perfectly bonded case) and lower bounded
(porous case). Again, our results show a stiffer overall stress-strain curve. Note that
the only difference between Ju, Liu and Sun’s model and Ju and Lee’s model is the
interfacial damage model and they both employed the Weibull statistics governing
equation for the evolutionary damage process. Consequently, it is expected that they
have similar results. On the other hand, our results have shown a good agreement
between our models and Papzian and Alder’s experimental results.

In summary, we have the following observations from the model validation and
verification.

1. The TFA-GPM model tends to give stiffer overall stress-strain curves. The
possible reason is the approximation of the continuous plastic strain fields by
piecewise uniform plastic strain fields and the Mori-Tanaka scheme.

2. The TFA-GPM in combination with Gurson yield criterion with initial porosity of
2% reduces the overall stiffness of the elastoplastic curves in the uniaxial tension
case. This clearly confirms that porosity and the evolutionary damage due to
porosity are significant factors that affect the overall elastoplastic behavior of the
composite.

3. Initial yielding of the overall composite materials is sandwiched between the
perfectly bonded case and the porous case in the case of Ju and Lee, Denda,
Weng and Zheng and Ju, Liu and Sun regardless of the yield criteria used.

10.5.3 4-phase Composite Material

In this section, we will consider a more complex model in order to show the full
capabilities of the proposed model to simulate a 4-phase Carbon/Glass Fibrous
composite. For simplicity, we assume the following holds true for this analysis:

1. The total fiber volume fraction is assumed to be 40%.
2. The graphite fibers occupy 60% of the total fiber volume fraction.

The initial distribution of the percentage of different phases given are shown in
Table 10.2.
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Table 10.2 Initial phase volume fraction

Phase 2% Void 8% Void

Epoxy 58% 52%
Graphite fibers 24% 24%
E-glass fibers 16% 16%

Table 10.3 Phase properties of epoxy/e-glass/graphite composite

Phase property Epoxy E-glass Graphite

E [GPa] 3.0 72 275.6
ν 0.35 0.17 0.2
σyv [MPa] 150 − −
h [GPa] 400 − −
q 0.5 − −

Table 10.4 Overall properties: ζ = 1

Parameters 2% Void 8% Void

E [GPa] 6.47 5.65
ν 0.307 0.287
G [GPa] 2.47 2.19
σ̄yv [MPa] 208.2 166.9

Table 10.5 Overall properties: ζ = 5

Parameters 2% Void 8% Void

E11 = E22 [GPa] 6.14 5.31
E33 [GPa] 14.8 13.4
ν12 = ν21 0.412 0.388
ν13 = ν23 0.128 0.103
ν31 = ν32 0.321 0.307
G12 [GPa] 2.17 1.91
G13 = G23 [GPa] 2.45 2.17
σ̄yv [MPa] 507.7 421.1

In this analysis, we tested for both the carbon fiber phase and the glass fiber phase
with aspect ratio 1 and 5. The mechanical properties of the epoxy are obtained from
Benzeggagh and Mergahni’s experimental results which are given in Table 10.3.

From the analysis, the overall properties for the Epoxy/E-Glass/Graphite com-
posite are obtained and these are recorded in Tables 10.4 for ζ = 1 (spherical shape)
and 10.5 for ζ = 5 (spheroidal shape). The final distribution of the percentage
between epoxy and void for all the cases are given in Table 10.6. In addition, for
the cases where ζ = 1, we apply a monotone loading up to 400 MPa while for the
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Table 10.6 Final phase volume fraction

Phase 2%, ζ = 1 8%, ζ = 1 2%, ζ = 5 8%, ζ = 5

Epoxy 57.893% 49.952% 57.996% 51.888%
Void 2.107% 10.048% 2.004% 8.112%
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Fig. 10.7 Overall curves for epoxy/e-glass/graphite composite

cases where ζ = 5, we load up to 600 MPa in the 33-direction. For the plots of stress
- strain curves, see Fig. 10.7.

Based on the results of the analysis, we can draw the following conclusions:

1. For ζ = 5 cases, the overall composites are transversely isotropic.
2. As aspect ratio increases, the composite becomes stiffer.
3. The overall initial yielding is strongly affected by the combination of the aspect

ratio and the initial void volume fraction. For instance, in the case of 2% initial
void, we have σ̄yv = 208.2 MPa for ζ = 1 whereas we have σ̄yv = 507.7 MPa for
ζ = 5.

4. Both the initial void volume fraction and the geometry of the fiber significantly
affect the final void volume fraction. As shown in Table 10.6, for the case where
initial void is 2% and ζ = 1, we have 2.11% final void percentage. However, if
the initial void is 8%, then the final void percentage is 10.05%.
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10.6 Closing Remarks

In this paper, the combined TFA-GPM approach is implemented to predict the
overall elastoplastic behavior of n-phase fiber-reinforced composites. The local-
ization rule is based on the TFA method while the prediction of the mechanical
concentration factors is estimated by the EMT theory. The yield criterion of the
matrix phase is extended from the von-Mises yield criterion to the Gurson-Tvergaard
yield criterion so as to take into account the effects of void growth under plastic
deformation. The results show that the Gurson-Tvergaard yield criterion does pro-
vide a better approximation in the prediction of overall elastoplastic behavior of
different types of 2-phase fiber-reinforced composites. Furthermore, simulation of a
4-phase fiber-reinforced composite is also provided, this certainly demonstrates the
power of the existing model. More importantly, a rigorous mathematical analysis of
the possible ranges of ∆eP

m and ∆ ēP has been provided. This certainly reduces the
computational effort for guessing the possible values of ∆eP

m and ∆ ēP. In Sect. 10.5,
the evaluation and verification of the proposed TFA-GPM model under different
cases have been accomplished. This assures the validity of the proposed model and
it provides a level of confidence for other applications.

In summary, the two significant contributions in this research work include:

1. The Gurson-Tvergaard yield criterion gives better results compared to the von-
Mises yield criterion since the effect of void growth has been considered in the
analysis.

2. A rigorous mathematical analysis was performed to obtain the necessary con-
ditions within the ranges for the change of the mean plastic strain ∆eP

m and the
change of the effective plastic strain ∆ ēP. This certainly provides a better start
for the iteration of the algorithm.

Appendix – The Four Partial Derivatives

∂P

∂ (∆eP
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∂P

∂ (∆ ēP)
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Chapter 11
Prediction of Mechanical Properties
of Composite Materials by Asymptotic
Expansion Homogenisation

J.A. Oliveira, J. Pinho-da-Cruz, and F. Teixeira-Dias

Abstract Finite element (FE) simulation plays a crucial role in the analysis of
the mechanical behaviour of structural elements built with complex microstructure
composite materials. In order to define microstructural details, finite element anal-
ysis (FEA) often leads to the need for unstructured meshes and large numbers of
finite elements. This fact frequently makes it impossible to perform numerical anal-
yses on the mechanical behaviour of such structural components, due to the large
amounts of required memory and CPU time. In this particular context, homogenisa-
tion methodologies lead to significant computational benefits.

One of these homogenisation methods is the asymptotic expansion homogeni-
sation (AEH). Following this approach, overall material properties can be derived
from the mechanical behaviour of selected microscale representative volumes, also
known as representative unit-cells (RUC). Nevertheless, unit-cell based models
require the control of several parameters. Additionally, the unstructured tetrahedral
finite element meshes frequently required by the complexity of RUC involve the
control of specific periodic boundary conditions.

This work shows the mathematical formulation and implementation details of
a dedicated three-dimensional FEA platform developed by the authors, which
enables the modelling of the elastic behaviour of structural components built from
composite materials. Automatic representative unit-cell generation procedures are
also developed with control over relevant geometrical parameters. Additionally, in
order to enforce the periodicity of boundary conditions, specific algorithms for the
association of degrees of freedom are implemented.

J.A. Oliveira, J. Pinho-da-Cruz, and F. Teixeira-Dias
Departamento de Engenharia Mecânica, Universidade de Aveiro, Campus Universitário de
Santiago, 3810-193 Aveiro, Portugal, e-mail: {jalex,jpc,ftd}@ua.pt
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11.1 Introduction

When numerically simulating the behaviour of metal matrix composites (MMC) it
is often necessary to use unstructured finite element meshes. The need for signif-
icant memory and CPU time resources leads to the use of dedicated optimisation
methodologies. Numerical models that predict the behaviour of these materials are
developed with these methodologies. One of these methods is the asymptotic expan-
sion homogenisation (AEH). Applying the AEH, overall material properties can
be derived from the mechanical behaviour of selected microscale representative
unit-cells (RUC). Nevertheless, unit-cell based modelling requires the control of
parameters such as reinforcement volume fractions, geometries and distributions
within the matrix material. This leads to the development of automatic geometry
generation algorithms. Additionally, unstructured tetrahedral meshes required by
complex RUC involve the control of specific periodic boundary conditions.

11.2 Asymptotic Expansion Homogenisation

The asymptotic expansion homogenisation (AEH) method is used to solve problems
that involve physical phenomena on continuous media with periodic microstruc-
tures. It is a useful technique to study the behaviour of structural components built
from composite materials. The main advantages of this methodology lie on the
fact that (i) it allows a significant reduction of the problem size and (ii) it has the
capability to characterise stress and deformation microfields. AEH leads to specific
equations that characterise these fields in a process called localisation, not found on
most homogenisation methods. The localisation process is essentially the inverse of
the homogenisation process.

11.2.1 AEH in Linear Elasticity

Consider a homogenenous linear elastic material associated to a material body Ω .
Its microstructure is made from the spatially periodic distribution of a representa-
tive unit-cell, associated with a body Y, as shown in Fig. 11.1. Most heterogeneous
materials have a small relation ε between the characteristic dimensions of the
micro- and macroscale (ε� 1). Applying loads to these materials results in periodic
oscillations of the resulting displacement, stress or deformation fields. These oscil-
lations derive from the periodicity of the microstructural heterogeneities and are
evident on a boundary of dimension ε of any point in Ω . Accordingly, it is usual to
assume the existence of two separate dimensional scales, x and y, linked to material
behaviour phenomena at the macroscale Ω and microscale Y levels, respectively
(see Fig. 11.1). Therefore, variables related to these fields functionally depend on
both x and y, where

y = x/ε (11.1)
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Fig. 11.1 Schematic representation of the heterogeneous elastic material body Ω and the unit-cell
Y, representative of the microscale, used in the AEH, which results, with ε→ 0, in the homogenous
material Ωh

As a result, the dependence in y is periodic in the domain Y. This property is
designated Y-periodicity.

In terms of elastic properties, the microstructural Y-periodicity is reflected on
the fact that the elasticity tensor D is Y-periodic in y. On the other hand, the homo-
geneity of the material at the macroscale level results on the indirect dependence of
the elasticity tensor on the macroscale coordinate system, x. Hence, in terms of the
components of the elasticity tensor,

Di jkl = Di jkl(y) (11.2)

However, in the macroscale coordinate system x, the microstructural heterogeneities
are noticeable on a period ε−1 times smaller than the characteristic dimension of the
domain Y. According to Eq. (11.1), this fact is denoted by

Dε
i jkl(x) = Di jkl(x/ε) (11.3)

where the index ε stands for the fact that D is εY-periodic on the macroscale coor-
dinate system, x. Assuming infinitesimal deformations and a static equilibrium, and
using Einstein’s tensor notation, the linear elasticity problem is described by equi-
librium equations, deformation-displacement relations and constitutive relations,
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written as [7]

∂σεi j

∂xεj
+ fi = 0 in Ω (11.4)

εεi j =
1
2

(
∂uεi
∂xεj

+
∂uεj
∂xεi

)
in Ω and (11.5)

σεi j = Dε
i jklε

ε
kl in Ω (11.6)

respectively, for i, j,k, l = 1, ...,3. σi j and εi j are the components of the Cauchy
stress and deformation tensors, respectively. fi and ui are the components of the
volume loads and displacement vectors, respectively.

The boundary of Ω is defined by the disjoint surfaces Γu and Γt. These surfaces
are related to the Dirichlet and Neumann boundary conditions, defined by

uεi = ūi in Γu and (11.7)

σεi jn j = t̄i in Γt (11.8)

respectively, with Γu ∪Γt = Γ and Γu ∩Γt = /0. ūi and t̄i are prescribed displacement
and surface load values, respectively. n j are the components of the normal versor
external to the surface Γt.

The resolution of the elasticity problem consists on the determination of the
displacement field corresponding to the solution uε ∈ V0

Ω of the variational problem∫
Ω

Dε
i jkl
∂uεk
∂xεl

∂vi

∂xεj
dΩ =

∫
Ω

fividΩ +
∫
ΓNu

t̄ividΓ , ∀v ∈ V0
Ω (11.9)

where V0
Ω is the set of continuous and sufficiently regular functions, zero-valued

in Γu.
Considering that the heterogenous material is made of n > 1 homogenous materi-

als, the elasticity problem consists of n equations analogous to Eq. (11.4), associated
to the continuity conditions of the displacements and surface loads in any of the sub-
domain interfaces. The displacement field can be approximated with the following
asymptotic expansion in ε:

uεi (x) = u(0)
i (x,y)+ εu(1)

i (x,y)+ ε2u(2)
i (x,y)+ · · · (11.10)

where u(r)
i (x,y), with r ∈ IN0, are Y-periodic functions in y and are called cor-

rectors of order r of the displacement field. With y = x/ε and according to the
differentiation chain rule,

∂ ·
∂xεi

=
∂ ·
∂xi

+
1
ε
∂ ·
∂yi

(11.11)

Replacing the displacement asymptotic expansion (Eq. (11.10)) in the deformation-
displacement relations 11.5 and using Eq. (11.11), a microscale problem is obtained,
which is associated to the definition of the characteristic displacement field tensor χχχ .
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The components of χχχ are the solutions χkl
i ∈ ṼY of the auxiliary variational problem∫

Y
Di jkl

∂χmn
k

∂yl

∂vi

∂y j
dY =

∫
Y

Di jmn
∂vi

∂y j
dY, ∀vi ∈ ṼY (11.12)

where ṼY is the set of Y-periodic continuous and sufficiently regular functions with

zero average value in Y. On the macroscale Ω the displacement field u(0)
i is the

solution of the homogenised elasticity problem

∂Σi j

∂x j
+ fi = 0 in Ω (11.13)

u(0)
i = ūi in Γu (11.14)

Σi jn j = t̄i in Γt with (11.15)

Σi j = Dh
i jkl
∂u(0)

k

∂xl
in Ω (11.16)

where the components Dh
i jkl of the homogenised elasticity tensor correspond to

Dh
i jmn =

1
|Y|
∫

Y
Di jkl (y)

[
Imn
kl − ∂χmn

k

∂yl

]
dY (11.17)

The analysis of the x and y scales comes from the possibility that the resulting dis-
placement fields exhibit periodic oscillations. These oscillations are superimposed
on macroscopic fields that do not consider the influence of microstructural details.
Thus, these oscillations can be interpreted as fluctuations around an average macro-
scopic value (see Fig. 11.2). The methodology here presented allows the definition
of a first order approximation ũεi (x), linear in relation to ε , for the displacement

Fig. 11.2 First order approximation of the asymptotic expansion of the displacement field, for a
one-dimensional case: the displacement field, in Ω , is approximated by the overlapping of the
macroscale homogenised field, inΩh, with the oscillations that result from the Y-periodicity of the
microscale field, in Y
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asymptotic expansion, uεi (x) (see Fig. 11.2), resulting, for null integration constants

for the term u(1)
i of the asymptotic expansion of the displacement field (Eq. (11.10)),

in
uεi (x) ≈ ũεi (x) = u(0)

i (x)+ εu(1)
i (x,y) (11.18)

A significant part of structural engineering applications that use heterogeneous
materials of periodic microstructure is based on values of ε� 1. This being the case,
a first order approximation for the displacement field is adequate to represent uεi . Not
considering the higher-order terms simplifies the AEH, resulting in the conventional
homogenisation methodology [10, 21]. For the elasticity problem, this consists on
an exact mathematical technique, through which one can solve a problem associ-
ated with a differential partial operator with high frequency periodic variations of its
coefficients (Eqs. (11.4)–(11.8)) in a simpler fashion, solving a problem associated
with a differential operator with constant coefficients (Eqs. (11.13)–(11.16)), which
is called the homogenised elasticity problem. The coefficients of the homogenised
problem are determined from the solution of a problem defined on the microscale
RUC, enforcing periodic constraints on its boundaries (Eqs. (11.12) and (11.17)).

11.2.2 Localisation Methodology

Another advantage of the AEH method is that it allows the characterisation of the
microstructural deformation and stress fields. This process, often called localisation,
is the inverse process of the homogenisation (see Fig. 11.3).

In a conventional homogenisation approach, a first order approximation in ε is
considered. For the localisation procedure, zero-order approximations in ε , σ̃ εi j and
ε̃εi j, are considered for the stress and deformation microstructural fields, respectively.
Hence, the microstructural stress field is

σ (1)
i j (x,y) = Di jkl(y)

(
Imn
kl − ∂χmn

k

∂yl

)
∂u(0)

m

∂xn
(11.19)

Fig. 11.3 Schematic illustration of the information flow in homogenisation and localisation
procedures, between the macroscale Ω and the microscale Y
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Moreover, the deformation microstructural field is defined by

ε(1)
i j (x,y) = Tkl

i j

(
Imn
kl − ∂χmn

k

∂yl

)
∂u(0)

m

∂xn
(11.20)

where

Tkl
i j =

1
2

(
δikδ jl + δilδ jk

)
(11.21)

δi j is the Kronecker delta. For a given point on the macroscale x, Eqs. (11.19)–
(11.20) are used to calculate approximate values of the stress and deformation fields,
respectively, within the heterogeneous material. In contrast, the homogenised stress

field, as it is the average value of the microstructural stresses σ (1)
i j in Y, is unable to

represent any microstructural fluctuations of the stress field.

11.3 Finite Element Method in AEH

11.3.1 Corrector χχχ

The solution of Eq. (11.12) is called corrector (χχχ) and contains the eigendeforma-
tions of the representative periodic geometry [5]. The element strain and stress
matrices are ε = Bu and σ = DBu, respectively, where all the variables belong
to the microscale problem, i.e. are relative to the geometry and material of the RUC.
Therefore, the finite element approach to Eq. (11.12) results in∫

Ye
BTDBdYχχχ =

∫
Ye

BTDdY = FD (11.22)

where the index e denotes element quantities from the meshed unit-cell domain
(body Y) [6]. It is worthwhile to note that the corrector χχχ is a matrix, not a vector.
The second term of Eq. (11.22) consists on the columns of the matrix FD [6], which
consist on six load vectors, leading to the same number of systems of equations
to solve. The results are solutions that make up the corrector, each one defining
an eigendeformation mode. Moreover, the definition of matrix FD shows that the
force vectors appear from the integration of the gradient of elastic properties of the
material components that form the composite material.

11.3.2 Periodicity Boundary Conditions

Periodicity boundary conditions are imposed over the surface boundaries of the
RUC. For a hexahedral unit-cell in y1 ∈ [0,y0

1], y2 ∈ [0,y0
2] and y3 ∈ [0,y0

3], the
boundary conditions can be defined as follows:
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χ jk
i (0,y2,y3) = χ jk

i (y0
1,y2,y3)

χ jk
i (y1,0,y3) = χ jk

i (y1,y
0
2,y3) and (11.23)

χ jk
i (y1,y2,0) = χ jk

i (y1,y2,y
0
3)

In order to prevent rigid body motion, displacements and rotations of an arbitrary
point of the unit-cell must be locked. In this work, this restriction is created acting
only on the translation degrees of freedom of one of the vertices of the RUC. Rigid
body motion is avoided by the periodicity constraints, which, as shown in relations
11.23, force the restriction to act equally over all other vertices.

11.3.3 Homogenised Elasticity Matrix Dh

The homogenised elasticity matrix Dh is obtained from Eq. (11.17), resulting in

Dh =
ne

∑
k=1

Y k

Y
Dk(I−Bkχχχk) (11.24)

where Y k is the volume of element k, Y the total geometry volume and I the identity
matrix. Note that if χχχ = 0, this equation becomes the classical volume average of
the elastic properties of the microscale elements.

11.4 Numerical Procedures

The numerical tools developed by the authors are based on the finite element
method (FEM) [13, 15, 25] and use tetrahedral and hexahedral finite elements. The
main focus of this section is on the auxiliary algorithms for RUC generation and
periodicity boundary condition management.

11.4.1 The Main Program

The finite element code is developed for structural linear elastic computations [13].
It solves 3-D problems using tetrahedral or hexahedral (linear or quadratic) finite
elements.

Since the FEM analyses considered in this work often lead to sparse coefficient
matrices, using the complete matrix on the numerical calculations greatly reduces
the efficiency of the matrix operations involved. This may become critical with the
increase of the size of the problem, as the number of zero coefficients tends to
increase, leading to a waste of computational effort. This limitation can be overcome
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identifying the zero values and ignoring subsequent operations. In this context, the
chosen storage scheme was the Compressed Row Storage (CRS) [2].

When performing numerical simulations, most of the computational time is spent
solving the system of equations [22], thus requiring a careful selection of an efficient
method. In this work, the authors opted for a non-stationary iterative method based
on Krylov subspaces [22]. This choice is based on the properties of the matrix of
coefficients, leading to the conjugate gradient method (CG) [9,11]. The CG method
is further improved with the use of preconditioning techniques, as the convergence
rate of the method greatly depends on the conditioning of the matrices [2].

Having to account for multi-freedom constraints (MFC) [8] in order to ensure
the periodicity of deformed RUC, the chosen method to impose essential boundary
constraints (prescribed displacements) was the penalty method.

11.4.2 Representative Unit-Cell Generation

RUC modelling requires accurate control of some geometric parameters, such as
(i) component volume fractions, (ii) reinforcement geometry and dimensions, (iii)
its distribution and (iv) geometric periodicity [14, 17]. The features of the devel-
oped program can be fit within three main groups: (i) standard models: cubic RUC
with predefined distributions of spherical particles, controlling volume or mass rein-
forcement fractions; (ii) random distribution and/or sizes: the position of spherical
reinforcement particles or their dimensions (or both) are randomly calculated for
RUC with different properties, with or without interference between particles and
(iii) RUC reinforced with continuous fibres: the distribution may be random or con-
fined to specific regions within the RUC. Additionally, geometric periodicity must
be guaranteed. For each reinforcement element that intersects the boundaries of
the cell, a set of matching geometries is created in order to guarantee cell-to-cell
continuity (see Fig. 11.4).

11.4.3 Automatic Association of Degrees of Freedom

To ensure that a unit-cell is representative of a periodic material, it is not only nec-
essary to guarantee geometric periodicity but also to enforce periodic deformations
through specific boundary conditions. There must be cell-to-cell continuity, mean-
ing that opposite geometrical boundaries of a given cell have to be identical, both for
the original and deformed states [3] (see Fig. 11.5). Deformed periodicity depends
on periodicity boundary conditions (see Eq. (11.23)). Thus, finite element nodes on
the geometry boundaries must be connected in order to ensure that displacements
are compatible with those of neighbouring cells. To make this task user-independent
and automatic, the matching degrees-of-freedom are found and associated.
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(a) (b)

Fig. 11.4 Particle generation scheme for periodical RUC: (a) random representative unit-cell and
(b) unit-cell periodicity

(a) (b)

Fig. 11.5 RUC periodicity: (a) original and (b) deformed geometries

Node association procedures are divided in three different stages: on corners,
edges and faces. Cell corners are linked since, in terms of periodicity/continuity,
they all represent the same point in neighbouring cells. The same is done between
parallel edges and parallel faces of the RUC. Afterwards, nodes are separated
according to the region where they belong and boundary nodes are separated
between master and slave nodes. Finally, for each node on a slave region, the
program looks for the ideal node on the master region to control the slave and
creates indexes that connect both nodes. Based on these indexes, it is then pos-
sible to impose the periodicity boundary constraints which are a special case of
multi-freedom constraints.

When working with structured finite element meshes, it is always possible to find
a master node that matches the place of a given slave. However, this is not true for
unstructured meshes. In this case, the mesh is often not periodic, meaning that the
node distribution on a master boundary may not be the same as in the matching
slave. Thus, it is necessary to check which master node is closer to where the slave
is and, by association, the master is expected to be.
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11.5 Numerical Applications

One of the main objectives of this work is to validate both the use of the asymp-
totic expansion homogenisation method and the use of unstructured finite element
meshes. The AEH is applied to the prediction of the mechanical properties of com-
posite materials with continuous fibre reinforcement. The results are obtained for
structured and unstructured finite element meshes and compared with analytical and
experimental results in order to validate the implemented procedures. The authors
start by evaluating the applicability of the use of unstructured tetrahedral finite ele-
ment meshes within the AEH method. The continuous parallel fibre reinforcement
composite material studied is schematically illustrated in Fig. 11.6, along with the
adopted RUC. The composite material is made of an aluminium (Al) matrix and
boron (B) reinforcement. The mechanical properties of these materials are listed
in Table 11.1 [12]. The homogenised elastic properties of the composite material
are calculated for a reinforcement volume fraction fr = 47%. Several numerical
simulations are done using two types of finite element: (i) linear tetrahedra and
(ii) linear hexahedra. For each finite element type, the authors performed a con-
vergence analysis [16] for the homogenised elasticity matrix Dh that results from
the homogenisation procedure applied to the representative unit-cell (see Fig. 11.6).
Six different mesh refinement levels were considered for each finite element type.
Numerical simulation results show that the homogenised elasticity matrices Dh

are orthotropic. The orthotropic character of the composite material lies on the

(a) (b)

Fig. 11.6 Schematic representation of (a) the continuous parallel fibre reinforcement composite
material and (b) the adopted representative unit-cell

Table 11.1 Elastic properties of the matrix (m) and reinforcement (r) materials of the aluminium
matrix composite reinforced with boron fibres

Property Value

Matrix elastic modulus, Em [GPa] 68.3
Matrix Poisson coefficient, νm [-] 0.3
Reinforcement elastic modulus, Er [GPa] 379.3
Reinforcement Poisson coefficient, νr [-] 0.1
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Fig. 11.7 Evolution of the norm of Dh with the number of degrees of freedom

fact that it has three orthogonal material symmetry planes – x1Ox2, x2Ox3 and
x1Ox3 (see Fig. 11.6). In fact, the elasticity matrices Dh define a special case of
the orthotropic material – the tetragonal structure material1 [1] – defined by the
following homogenised elasticity matrix:

Dh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dh
11 Dh

12 Dh
12 0 0 0

Dh
12 Dh

22 Dh
23 0 0 0

Dh
12 Dh

23 Dh
22 0 0 0

0 0 0 Dh
44 0 0

0 0 0 0 Dh
55 0

0 0 0 0 0 Dh
44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.25)

The convergence study showed that there is a simultaneous convergence of all
the Dh matrix components, where very little variations are observed. From this, in
order to simplify the presentation of the results, the main analysis is shown consid-
ering the evolution of the Frobenius norm2 of matrix Dh, ‖Dh‖, with the number
of degrees of freedom. These results are shown in Fig. 11.7. The evolution of the
norm of Dh with the number of degrees of freedom, ngl, for the presented finite
elements does not show evidence of numerical instability (numerical oscillation or
divergence phenomena). On the other hand, in the AEH method, the convergence of
the results depends not only on the number of degrees of freedom but also on the
number of finite elements. In fact, while the convergence of a conventional finite

1 The fact that Dh
55 �=

Dh
22−Dh

23
2 excludes the transverselly isotropic material.

2 The convergence of the Frobenius norm of a matrix is a necessary, but not sufficient, condition
for the convergence of all its components.
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element analysis depends only on the number of degrees of freedom [16], in the
AEH the Dh matrix is calculated by a volume average of the microscale properties,
corrected by the gradients of the characteristic displacement fields of the RUC over
all elements (Eq. (11.24)). Thus, this method also requires a number of elements
large enough to allow for this averaging process to reach asymptotic convergence.
The convergence may be further improved using quadratic elements, which better
represent the referred gradients and allow for the use of a lower number of ele-
ments [15]. Figure 11.8 represents the evolution of the norm of Dh with the number
of finite elements, nel, used in each finite element mesh. Each mesh refinement
step led to approximations with relative variations always lower than 1%. The linear
hexahedra had a gradual approximation to the convergence limit, while both types
of finite element resulted in good approximations. The mesh refinement process led
to improvements under 0.5% for mesh refinements with over 41,140 tetrahedral ele-
ments (8,006 nodes) and 6,860 hexahedral elements (8,520 nodes), thus associated
to converged solutions [16]. These finite element meshes are shown in Fig. 11.9,
along with the original geometries. The constitutive matrices Dh resulting from the

Fig. 11.8 Evolution of the norm of Dh with the number of finite elements

(a) (b) (c) (d)

Fig. 11.9 Representative unit-cell for an aluminium matrix composite material reinforced with
continuous boron fibres (47% vol.): (a) and (b) geometry; (c) unstructured tetrahedral mesh and
(d) structured hexahedral mesh
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Fig. 11.10 Representation
of the components of the
constitutive material matrix
Dh calculated with tetrahe-
dra (T) and hexahedra (H)
finite element meshes, for an
aluminium matrix compos-
ite material reinforced with
boron continuous cylindrical
fibres (47% vol.)

Table 11.2 Numerical (N), analytical (A) and experimental (E) elastic properties of an aluminium
matrix composite material reinforced with boron fibres (47% vol.)

Results E11 [GPa] E22 [GPa] G12 [GPa] G23 [GPa] ν12 [-] ν23 [-]

N – AEH 214.6 144.5 54.7 46.2 0.19 0.25
N – Xia et al. 214 143 54.2 45.7 0.195 0.253
N – Sun and Vaidya 215 144 57.2 45.9 0.19 0.29
A – Sun and Chen 214 135 51.1 – 0.19 –
A – Chamis 214 156 62.6 43.6 0.20 0.31
A – Whitney and Riley 215 123 53.9 – 0.19 –
E – Kenaga et al. 216 140 52 – 0.29 –

use of these finite element meshes are represented in Fig. 11.10, where, according
to Eq. (11.25), the tetragonal character of the composite material is observed. The
manipulation of the homogenised flexibility matrix components associated to the
numerical analysis using the tetrahedral finite element mesh allows the calculation
of the elastic properties of the composite material. These properties are shown in
Table 11.2, along with results taken from numerical (N) and analytical (A) predic-
tions, and experimental results (E) [12]. In what concerns the numerical prediction
results, Xia et al. [24] presented values achieved through a combination of the finite
element method with explicit periodicity conditions based on the micromechanical
models developed by Suquet [20]. Sun and Vaidya [19] presented numerical results
based on the conjugation of principles of equivalent deformation energy with the
finite element method. The analytical prediction results of Whitney and Riley [23]
are based on energy weighting methods derived from the classical theory of elastic-
ity. The analytical prediction results presented by Sun and Chen [18] and Chamis [4]
are based on micromechanical models involving continuity and load equilibrium
conditions. The numerical values were obtained by the inversion of the elasticity
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matrix Dh, resulting in the homogenised flexibility matrix3

Sh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

−ν12
E11

−ν12
E11

0 0 0
−ν12
E11

1
E22

−ν23
E22

0 0 0
−ν12
E11

−ν23
E22

1
E22

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.26)

where E11 and E22 are the elasticity moduli, regarding the fibre longitudinal and
transverse directions, respectivelly. G12, ν12, G23 and ν23 are the shear moduli and
the Poisson ratios associated with directions 1 and 2, and 2 and 3, respectively. The
results of the AEH are good approximations for the experimental results. In fact,
the values obtained for E11, E22 and G12 only differ by 0.6%, 3.2% and 5.2% from
the experimental ones, respectivelly. Although a 34.5% deviation appears for ν12

in comparison with the experimental value, the best approximation (Chamis) still
differs by 31%. The differences between the AEH results and experimental results
can be related to the fact that the numerical modelling doesn’t consider the irreg-
ular distribution of the reinforcement fibres, defects within the composite material,
imperfect adhesion between the material components, etc. Even so, the numerical
results are considered as valid estimations for the mechanical properties of the com-
posite material. In comparison to the rest of the prediction methods, the AEH gives
the best overall approximations.

Another relevant aspect is the fact that AEH homogenised properties are calcu-
lated using the corrector χχχ of the displacement field (Eq. (11.24)). The characteristic
displacements (i.e. eigendeformations) defined by the corrector are a measure of
the microstructural composite material heterogeneity [5]. The six characteristic dis-
placement fields are shown in Fig. 11.11, for the RUC meshed with tetrahedra and
hexahedra. The displacements defined in the columns of matrix χχχ are the (six) solu-
tions of a system of equations where the load vectors are the (six) columns of the
matrix FD (Eq. (11.22)), designated characteristic load vectors (see Fig. 11.12). The
differences in terms of the type of elements and the fact that only the structured
meshes are periodical (in spite of being a discretisation of the same periodical geom-
etry), through the use of the degree of freedom association, do not compromise the
results. Furthermore, the fact that the homogenised elastic properties converge to
the same values shows that the AEH leads to correctors χχχ representative of the
same heterogeneity. The deformed periodicity is also guaranteed, as may be seen
for the shear mode χχχ23 in Fig. 11.13, using eight tiled RUC.

After the validation of the AEH procedure for non-periodical/unstructured
meshes, there is still the need to evaluate the procedure analysing the dependence on
the choice of a given unit-cell as truly representative of the material geometry and

3 Note that for a tetragonal material E33 = E22, G13 = G12 and ν13 = ν12, requiring only six
independent properties for its definition: E11, E22, G12, G23, ν12 and ν23.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11.11 Characteristic displacements for a RUC of a fibre reinforced composite material,
meshed with (a–f) tetrahedra and (g–l) hexahedra – axial modes (a, g) χχχ11, (b, h) χχχ22 and (c, i)
χχχ33, and shear modes (d, j) χχχ12, (e, k) χχχ23 and (f, l) χχχ13

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11.12 Characteristic load vectors for a RUC of a fibre reinforced composite material, meshed
with (a–f) tetrahedra and (g–l) hexahedra – axial modes (a, g) FD

11, (b, h) FD
22 and (c, i) FD

33, and
shear modes (d, j) FD

12, (e, k) FD
23 and (f, l) FD

13
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(a) (b)

Fig. 11.13 Y-periodicity of the characteristic displacements – illustration of the shear mode χχχ23
using eight RUC meshed with (a) tetrahedra and (b) hexahedra

(a) (b) (c) (d) (e)

Fig. 11.14 Alternative RUC for a fibre reinforced composite material ( fr = 47%): (a) reference
RUC, (b) C1, (c) C2, (d) C3 and (e) C4

Table 11.3 Absolute value of the relative error of the homogenised elasticity matrix, in comparison
to the reference RUC

RUC C1 C2 C3 C4

|REN| [%] 0.14 0.47 0.0072 0.38

mechanical behaviour. Thus, a numerical study was done using different RUC, all
related to the same composite material. These geometries are shown in Fig. 11.14,
as well as the reference RUC studied in the previous section. Note that cell C4 has
twice the size of the others and is equal to eight tiled reference unit-cells.

The results are listed in Table 11.3, in terms of the modulus of the relative error of
the norm (|REN|) of the homogenised elasticity matrix, in comparison to the refer-
ence RUC. Approximations of the same order are determined for the components of
homogenised elasticity matrices, showing that the AEH method is accurate enough
to represent the behaviour of a given periodic microstructure composite material
as long as the chosen volume element is representative of the distribution of the
microscale material. The fact that the method does not require cubic cells, as shown
with the representative unit-cell C1, is also relevant. In this case, the RUC size can
be reduced along the longitudinal axis of the fibres, as the effective properties of the
composite material along this direction are coincident with the law of mixtures for a
parallel association of material components. On the other hand, observing RUC C4
and its results, becomes clear that, in this case, the dimension factor ε between
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11.15 Y-periodicity of the characteristic displacements – shear mode χχχ23 using alternative
RUC: (a–b) reference RUC, (c–d) C1, (e–f) C2, (g–h) C3 and (i–j) C4

scales is not numerically relevant. In fact, ε does not even appear in the explicit for-
mulation of the method for a first order approximation (i.e. the conventional AEH
method), as considered in this work.

Tiles of four RUC are shown in Fig. 11.15 in order to illustrate the fact the cor-
rectors are indeed representative of the microscale heterogeneities. It is now easier
to see that the correctors exactly represent the same deformed geometry of the over-
all composite material, even if obtained from different representative volumes. Note
that the displacement values shown in Figs. 11.15f, h seem to represent a different
deformed geometry when compared to the other results. Nevertheless, as seen in
Figs. 11.15e, g, it is exactly the same. The differences in terms of displacement are
derived from the fact that the fixed points used to avoid rigid motion are located at
different places within the material microstructure.

11.6 Final Remarks

The main conclusion of this work is the validation of the use of the AEH approach,
both in terms of global finite element simulation applications and prediction of
effective material properties for periodic microstructure composite materials.

The numerical simulation results show that the homogenised elasticity matrices
Dh of the fibre reinforced composite material define a particular case of orthotropic
material: the tetragonal structure material.

The convergence study showed the simultaneous convergence of all Dh matrix
components, as well as of the Frobenius norm, for structured and unstructured/non-
periodical meshes. Moreover, in the AEH the convergence of the results depends not
only on the number of degrees of freedom but also on the number of finite elements.
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The AEH proved to be accurate enough to represent the behaviour of a given
periodic microstructure composite material as long as the chosen volume element
is representative of the microscale material distribution. Additionally, the fact that
the homogenised elastic properties converge to the same values shows that the AEH
procedure leads to correctors χχχ that are representative of the same heterogeneities.

The obtained numerical results indicate that the tools that were developed allow
the use of non-periodical meshes within a finite element homogenisation approach
for periodic microstructures. The results of the AEH method are good approxi-
mations for the experimental results. In comparison to the rest of the prediction
methods used, the AEH gives the best global approximations.

References

1. Banks-Sills L, Leiderman V, Fang D (1997) On the effect of particle shape and orientation on
elastic properties of metal matrix composites. Compos Part B 28:465–481

2. Barrett R, Berry M, Chan TF et al. (1994) Templates for the solution of linear systems:
Building blocks for iterative methods. SIAM, Philadelphia. PA
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Chapter 12
On Buckling Optimization
of a Wind Turbine Blade

Erik Lund and Leon S. Johansen

Abstract The design of composite structures such as wind turbine blades is a chal-
lenging problem due to the need for pushing the material utilization to the limit in
order to obtain light and cost effective structures. As a consequence of the min-
imum material design strategy the structures are becoming thin-walled, such that
buckling problems must be addressed, and in this work the aim is to obtain buck-
ling optimized multi-material designs of wind turbine blades. The design problem
consists of distributing multiple materials within a given design domain, and the
candidate materials may be fiber-reinforced materials, oriented at given discrete
fiber angles, together with isotropic materials like foam materials used for sandwich
structures. The discrete design optimization problem is converted to a continuous
problem using the so-called Discrete Material Optimization (DMO) approach based
on ideas from multi-phase topology optimization where interpolation functions with
penalization are introduced. In this way traditional gradient based optimization
techniques including efficient methods for design sensitivity analysis and mathemat-
ical programming can be used for solving the multi-material distribution problem.
The multi-material topology optimization approach is demonstrated for buckling
optimization of a 9 m generic wind turbine blade test section.

12.1 Introduction

Fiber-reinforced composite laminates are popular because of high stiffness-to-
weight and strength-to-weight ratios compared with isotropic materials, and they
are, for example, used in naval, aerospace, automobile and other mechanical appli-
cations. Such composite laminates consist of layers of one or more materials stacked
at different orientation angles, and they permit the designer to tailor the structure or
component to achieve the specified objectives.

E. Lund and L.S. Johansen
Department of Mechanical Engineering, Aalborg University, Pontoppidanstraede 101, DK-9220
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In the design optimization of composite laminates, ply angles and layer thick-
nesses are often employed as continuous design variables. However, in practice the
layer thickness for each material is usually fixed and fiber orientation angles of
the fiber-reinforced materials, e.g. Glass and Carbon Fiber Reinforced Polymers
(GFRP/CFRP), are often limited to a discrete set such as 0◦, ±45◦, and 90◦ in order
to obtain a cost-effective design. Occasionally ply angles which have 15◦ incre-
ments between 0◦ and 90◦ may be used. Thus, the design of such structures is often
considered as a discrete optimization problem involving the specification of mate-
rial type and orientation of ply layers in the stacking sequence. Such optimization
problems are considered in this paper with focus on buckling design of wind turbine
rotor blades.

Laminate design is an area of major importance, as shown in the book [15] that
contains extensive references. A survey of optimal design of laminated plates and
shells can be found in, e.g., Abrate [1]. A major challenge for optimizing composite
structures is the non-convexity of the design space, i.e. the risk of ending up with a
local optimum solution is high.

For composite laminates made of a single FRP material one approach is to use
continuous design variables and introduce the lamination parameter method by [36]
used by e.g. [24] and [17] for orientational stiffness optimization of plates. Intro-
duction of lamination parameters is efficient for stiffness optimization because the
stiffness components of laminated composites are expressed as linear functions
with respect to lamination parameters. However, the lamination parameter method
requires closed-form analytical formulation of appropriate lamination parameters
which has so far only been achieved for relatively simple geometries, i.e., not in
case of general shell structures. [12] studied buckling optimization of orthotropic
laminated cylindrical shells under combined loadings using lamination parameters
and a mathematical programming method. [11] studied buckling optimization of
plates and cylindrical shells taking thermal effects into account. In [10] a general
approach of forcing convexity of ply angle optimization of single material com-
posite laminates based on lamination parameters is presented. However, lamination
parameters do not allow for design with multiple materials and material properties
that vary spatially over the structure and convexity is lost for problems with multiple
design criteria.

The problem of combined design for orientation and topology has been studied
using several different approaches. Varying the fiber volume fraction and changing
the fibers orientation at each point of the structure result in a variable stiffness com-
posite, see e.g. different approaches in [9, 22, 34, 35]. Combined topology and fiber
path design of composite laminae has been studied by [27] using the SIMP (Solid
Isotropic Material Penalization) approach of topology design, see [7], in a cellular
automata framework.

In [2] laminated hybrid composites consisting of CFRP in the outer layers and
GFRP in the inner layers are optimized for maximum buckling load and minimum
cost with only a discrete set of available ply orientations. When the composite
laminate design problem is considered as a discrete optimization problem where
ply angles are limited to a discrete set, most approaches use evolutionary algorithms
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such as genetic algorithms, see [15] and references therein. In such evolutionary
algorithms the performance of each design has to be evaluated, for example using
finite element methods like in this work, and in case of large real life structures
with many design variables such approaches thus become very computationally
expensive, see e.g. [3].

In this paper the design problem is formulated using the so-called Discrete
Material Optimization (DMO) approach based on ideas from multi-phase topology
optimization (see Sigmund and co-workers [13, 29]) where the material stiffness
(or density) is computed as a weighted sum of candidate materials. In this way the
discrete problem of choosing the best material (with the right orientation) for each
ply with fixed thickness is converted to a continuous formulation where the design
variables are the scaling factors (or weight functions) on each candidate material.
The method has been successfully applied for maximum stiffness design, eigenfre-
quency design, and buckling design using as many as 12 candidate materials at each
point and several hundred thousands of design variables in total, see [20, 21, 31].
In [20] the DMO method is applied for buckling design of laminated multi-material
shell structures, and in the current work the approach is investigated for buckling
design of a wind turbine blade test section.

In Sect. 12.2 the DMO approach is described followed by details about the finite
element based analysis and design sensitivity analysis in Sect. 12.3. The optimiza-
tion problem is solved using mathematical programming as described in Sect. 12.4,
and finally the design optimization approach is demonstrated for buckling design of
a wind turbine blade test section in Sect. 12.5.

12.2 Discrete Material Optimization (DMO) Approach

The design problem is posed as to optimize a general laminated multi-material com-
posite structure where each of the plies have fixed thickness and the ply angles of
FRP materials are limited to a discrete set such as 0◦, ±45◦, and 90◦. The candi-
date materials to choose between may be FRP materials (with a given fiber angle)
together with isotropic materials like foam materials.

The discrete optimization problem is converted to a continuous problem in the
DMO approach by introducing continuous weight functions, such that the materi-
als stiffness (or density) is computed as a weighted sum of candidate materials, see
[20, 21, 31]. Weight functions are introduced for this interpolation, and it is the aim
of the optimization to yield a distinct choice of candidate material as in traditional
topology optimization where the material distribution of a single material within a
given design domain is typically investigated. The continuous formulation allows
the use of efficient gradient based optimization techniques for the multi-material
topology optimization problem considered while reducing the risk of obtaining
a local optimum solution (see, e.g., minimum compliance examples in [32] with
provably good objective functions and compare with DMO results in [21]).
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12.2.1 Parametrization for Single Layered Laminate Structures

As in traditional topology optimization the parametrization of the DMO formulation
is invoked at the finite element level. The element constitutive matrix, Ce, for a
single layered laminate structure may in general be expressed as a sum over the
element number of candidate material configurations, ne:

Ce =
ne

∑
i=1

wiCi = w1C1 + w2C2 + · · · + wneCne , 0 ≤ wi ≤ 1 (12.1)

where each candidate material is characterized by a constitutive matrix Ci. The
weight functions wi must all have values between 0 and 1 in order to be phys-
ically allowable. Furthermore, in case of solving buckling problems or having a
mass constraint as in the optimization problems studied here, it is necessary that
the sum of the weight functions is 1.0, i.e., ∑ne

i=1 wi = 1.0. If this demand is not
fulfilled, physically meaningless results will be obtained for the buckling load fac-
tor for intermediate values of the weight functions. Similarly, the mass density ρ is
computed using the weight functions, and if the sum of the weight functions does
not add up to unity, the computed mass M cannot be compared to the prescribed
mass constraint M.

For details about different parametrization schemes the reader is referred to [30,
31], and only the most effective implementation is briefly outlined here.

For each element a number of design variables xe
i , i = 1, . . . ,ne is introduced, and

the weight functions wi used are defined as

wi =
ŵi

∑ne

k=1 ŵk
, i = 1, . . . ,ne where ŵi = (xe

i )
p

ne

∏
j=1; j �=i

(
1− (xe

j)
p) (12.2)

As an example, in case of four candidate materials the weight functions ŵi are given
as

ŵ1 = (xe
1)

p (1− (xe
2)

p)(1− (xe
3)

p)(1− (xe
4)

p)
ŵ2 = (xe

2)
p (1− (xe

1)
p)(1− (xe

3)
p)(1− (xe

4)
p)

ŵ3 = (xe
3)

p (1− (xe
1)

p)(1− (xe
2)

p)(1− (xe
4)

p)
ŵ4 = (xe

4)
p (1− (xe

1)
p)(1− (xe

2)
p)(1− (xe

3)
p)

(12.3)

The SIMP method known from topology optimization has been adopted by intro-
ducing the power, p, to penalize intermediate values of xe

i , such that the design
variables xe

i are pushed towards 0 or 1. The power p is typically set to 1 or 2 in the
beginning of the optimization process and then increased by 1 for every 10 design
iterations until p is 3 or 4. Moreover, the term (1− xe

j) j �=i is introduced such that an
increase in xe

i results in a decrease of all other weight functions. Finally, the weights
have been normalized in order to satisfy the constraint that the sum of the weight
functions is 1.0 (this is in general not the case for the weight functions ŵi).
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The initial values of the design variables, xi, may in principle be any set of num-
bers between 0 and 1 but in general the values should be chosen such that the initial
weighting is uniform, i.e. wi = wj for all i, j = 1, . . . ,ne. In this way no candidate
material is favored a priori.

12.2.2 Parametrization for Multi Layered Laminate Structures

The only difference between single and multi layered laminate structures is that the
interpolation given above has to be used for all layers, i.e., the layer constitutive
matrix Cl

k for layer k is computed as

Cl
k =

nl

∑
i=1

wiCi (12.4)

where nl is the number of candidate materials for the layer.

12.2.3 Patch Design Variables

The design variables xi may be associated with each finite element of the model or
the number of design variables may be reduced by introducing patches, covering
larger areas of the structure. This is a valid approach for practical design problems
since laminates are typically made using fiber mats covering larger areas.

12.2.4 DMO Convergence

In order to describe whether the optimization has converged to a satisfactory result,
i.e. whether a single candidate material has been chosen in all layers and all
other materials have been discarded, a DMO convergence measure is defined. For
each layer in each element the following inequality is evaluated for all nl weight
factors, wi:

wi ≥ ε
√

w2
1 + w2

2 + · · ·+ w2
nl (12.5)

where ε is a tolerance level, typically 95–99.5%. If the inequality 12.5 is satisfied for
one of the weight factors wi in the layer it is flagged as converged. The DMO con-
vergence measure, hε , is then defined as the ratio of converged layers in all elements
Nl,tot

c to the total number of layers in all elements Nl,tot :

hε =
Nl,tot

c

Nl,tot (12.6)
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The DMO convergence measure is denoted h99.5 if the tolerance level is 99.5% (and
so forth) and full convergence, i.e. h99.5 = 1, simply means that all layers in all
elements have a single weight factor contributing more than 99.5% to the Euclidian
norm of the weight factors.

12.3 Analysis and Design Sensitivity Analysis

The analysis of the general laminated composite structure is in this work based on
nine node isoparametric shell finite elements. All materials are assumed to behave
linearly elastic and the structural behavior of the laminate is described using an
equivalent single layer theory where the layers are assumed to be perfectly bonded
together such that displacements and strains will be continuous across the thickness.
Such theories are known to be sufficiently accurate for modeling of the structural
stiffness. The shell elements used are derived using the degenerated solid approach
and are thus based on first order shear deformation theory, see, e.g., [5].

The analyses involved are static stress analysis and linear buckling analysis in
order to determine the buckling load factor, i.e., the structure is assumed to be per-
fect with no geometrical imperfections and the buckling load found will typically
be an upper limit for the real value. Thus, the analyses performed are

KD = F and (K + λ jKσ )Φ j = 0, j = 1,2, . . . (12.7)

Here K is the global stiffness matrix, D is the global displacement vector and F
the global load vector. In the buckling analysis problem Kσ is the global stress
stiffness matrix, the eigenvalues λ j are assumed ordered by magnitude, such that
λ1 is the lowest eigenvalue, i.e., buckling load factor, and Φ1 is the corresponding
eigenvector.

In order to optimize the structure using the DMO approach gradients must be
made available. The design variables are termed xi, i = 1, . . . , I, and the design sen-
sitivity analysis is based on the direct differentiation approach. In case of a simple,
i.e. distinct, eigenvalueλ j in the buckling analysis, the eigenvalue sensitivity is given
as [8, 14, 16, 23, 37]

dλ j

dxi
= −ΦT

j

(
dK
dxi

+λ j
dKσ
dxi

)
Φ j (12.8)

where it has been assumed that the eigenvectors have been Kσ -orthonormalized,
such that ΦT

j KσΦ j = 1.
In case of multiple eigenvalues the eigenvectors are not unique, which compli-

cates the sensitivity analysis and optimization due to the non-differentiability of
the eigenvalues. In such situations the sensitivity analysis described in [28], see
also [20], is used together with the optimization algorithm developed in [19]. The
details are omitted here for brevity.
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For the DMO material parametrization used in this work where the geometry is
fixed and only the material is changed, the stiffness matrix derivative dK/dxi only
involves the derivative of the element layer constitute matrix Cl

k with respect to xi,
which is easily done analytically by differentiating the interpolation, see Eqs. (12.1)
and (12.2).

The stress stiffness matrix is an implicit function of the displacement field, i.e.
Kσ = Kσ (D(x),x), which must be taken into account. The displacement sensitiv-
ities dD/dxi are computed using the direct differentiation approach, i.e., the static
equilibrium equation is differentiated with respect to a design variable xi

K
dD
dxi

=
dF
dxi

− dK
dxi

D (12.9)

where the load sensitivity dF/dxi is zero for the DMO material design variables
used, unless volume forces are considered. The displacement sensitivity is computed
analytically by solving Eq. (12.9) for each design variable xi, reusing the factorized
global stiffness matrix K from the analysis in case of using a direct solver. The
stress stiffness matrix sensitivity dKσ/dxi in Eq. (12.8) is computed by a central
difference approximation at the element level, i.e.

dKσ

dxi
≈ Kσ (x +∆xi,D+∆D)−Kσ(x−∆xi,D−∆D)

2∆xi
(12.10)

where ∆D ≈ dD
dxi
∆xi. Thus, a semi-analytical design sensitivity analysis is applied.

The perturbation ∆xi of the DMO design variable xi is set to 0.001. The well-known
inaccuracy problem associated with semi-analytical design sensitivity analysis of
slender beam, plate and shell structures only appears in case of shape design vari-
ables (see [4, 26] for details) and no inaccuracy problems have been observed for
the central difference approximation of element stress stiffness matrix sensitivities
in case of DMO material design variables.

Alternatively, the element stress stiffness matrix sensitivities can be computed
using

dKσ
dxi

=
∂Kσ
∂xi

+
∂Kσ
∂D

dD
dxi

(12.11)

but this requires quite a lot of additional derivations and programming to implement
which is the main reason for using Eq. (12.10).

12.4 The Optimization Problem

The optimization problem of maximizing the buckling load factor λ1 with a mass
constraint is formulated using a bound formulation, see [6], as

Objective: max
x,β

β
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Subject to : λ j ≥ β , j = 1, . . . ,Nλ
(K + λ jKσ )Φ j = 0, j = 1,2, . . .

M ≤ M

xi ≤ xi ≤ xi, i = 1, . . . , I

(12.12)

where M is the upper limit on the mass M of the structure. By introducing the bound
parameter β the lowest Nλ eigenvalues are considered when solving the minimax
problem of maximizing the buckling load factor, and the possibility of crossing
eigenvalues (mode switching) and creation of multiple eigenvalues is taken into
account during the optimization process.

The derivative of the mass constraint in Eq. (12.12) is also computed analyti-
cally, and having obtained all the necessary design sensitivities, the mathematical
programming problem is solved using the Method of Moving Asymptotes by Svan-
berg [33]. A nested approach is used, i.e., the state equations added as equality
constraint in Eq. (12.12) are not included in the mathematical programming prob-
lem as they are solved a priori using the inhouse finite element code MUST [25].
The closed loop of analysis, design sensitivity analysis and optimization is repeated
until convergence in terms of no change of the design variables is reached or until a
prescribed maximum number of design iterations has been performed.

12.5 Buckling Optimization of Wind Turbine Blade Test Section

The design of wind turbines blades is a challenging problem due to the need for
pushing the material utilization to the limit in order to obtain light and cost effective
structures. As a consequence of the minimum material design strategy the structures
are becoming thin-walled, such that buckling problems must be addressed, and in
this work the aim is to obtain buckling optimized designs of a 9 m generic wind
turbine blade test section using the multi-material topology optimization approach
presented.

The generic 9 m wind turbine blade test section has been studied numerically
and experimentally in the Ph.D. thesis by Kühlmeier [18], see Fig. 12.1. The test
section is used for technology demonstration projects and conceptual studies. The
9 m section is un-tapered and non twisting, i.e. it is an extruded 2D section. The test
setup in which the 9 m section is normally tested is in a 4-point flap-wise bending
configuration where the middle 2 m of the 9 m section is loaded with a constant
bending moment as seen in Fig. 12.1.

The structural instability behavior of the test section in pure bending has been
investigated both experimentally and using finite element models for linear buckling
analysis and geometrically non-linear analysis. The conclusion from [18] is that a
linear buckling analysis may underestimate the buckling load factor significantly
as imperfections are thus neglected but the buckling mode obtained from the linear
buckling analysis is quite similar to the deformation mode observed experimen-
tally and also obtained from a geometrically non-linear analysis. Thus, from an
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(A) (B)

Fig. 12.1 A: 9 m generic wind turbine blade test section in four point bending, see details in [18].
B: An example of linear buckling analysis of a generic wind turbine blade using a solid shell finite
element model
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Fig. 12.2 Cross section and layup of NACA 634 - 421 wind turbine blade test section studied
in [18]. The fiber angles are given with respect to the length direction (z)

optimization point of view, a linearized buckling analysis may constitute a suffi-
ciently accurate analysis model as starting point when the objective is to solve the
material distribution problem for maximizing the buckling resistance of the blade.

The cross section of the 9 m section is a NACA 634 - 421 profile with a chord
of 1.17 m. It is close to being symmetric as it only has a 4% chamber, and in this
paper the cross section is considered symmetric in order to reduce the size of the
computational model. The cross section and the layup can be seen in Fig. 12.2.

The materials used for the test section can be seen in Table 12.1.
Typically there is a design constraint on the global bending stiffness of the blade

since fatigue issues often drive the design. Hence the maximum strain of the material
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Table 12.1 Material properties for wind turbine blade

Material property GFRP Wood-carbon/epoxy Adhesive Balsa Foam

E1 [MPa] 30,600 57,500 3,000 352 2,000
E2 [MPa] 8,700 620 – 352 –
E3 [MPa] 8,700 620 – 3,920 –
ν12 0.29 0.45 0.37 0.3 0.47
ν23 0.30 0.3 – 0.1 –
ν13 0.30 0.3 – 0.1 –
G12 [MPa] 3,240 1,200 1,095 15.7 680
G23 [MPa] 2,900 1,100 – 157 –
G13 [MPa] 3,240 1,200 – 157 –
Density [kg/m3] 1,686 1,079 1,200 80 200

Fixed all d.o.f.

Anti-symmetry enforced
at symmetry planex-z

Distributed compression load

Stiff material

Design area (trailing edge panel)

Fixed layup

x

y

z

Fig. 12.3 Simplified model of the NACA 634 - 421 airfoil test section. The design domain is the
trailing edge panel. Antisymmetric boundary conditions are assumed

is a constraining factor. Today’s carbon fibre materials have excellent fatigue prop-
erties and thus the material is strained still harder to gain the maximum utilization
of the expensive carbon fibre. Thus the structure should be buckling stably at the
highest possible strain. Because of the constraint on the global stiffness the expen-
sive wood-carbon/epoxy material is used in the spar cap and remains fixed during
the optimization in the example considered.

In the analysis model used the middle 2 m of the test section is extended with
areas consisting of stiff material (10 times stiffer than the test section) in order to
simulate the boundary conditions in the test. Furthermore symmetry of the cross sec-
tion is assumed for simplicity, and this results in antisymmetric boundary conditions
as illustrated in Fig. 12.3.

The total axial load is 166 · 103 N distributed as a compression load on the spar
cap as illustrated in Fig. 12.3, giving a total moment of 47.5 kNm. The analysis
model consists of 1,642 nine node isoparametric shell finite elements.
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Fig. 12.4 The design area (the
trailing edge sandwich panel)
is divided into 14 patches.
Results of the topology opti-
mization will be presented for
the zoomed area

Zoomedarea

Patch 1
Patch 2
Patch 3
Patch 4
Patch 5
Patch 6
Patch 7
Patch 8
Patch 9
Patch10
Patch11
Patch12
Patch13
Patch14

The whole trailing edge panel is allowed to change in the design optimization
(including the part close to the trailing edge marked with the color red in Fig. 12.2),
and it is divided into 14 patches as illustrated in Fig. 12.4. Each patch has 12 layers
of equal thickness 0.5 mm, i.e., the total thickness is 6 mm everywhere in the design
area. The buckling modes of the lowest eigenvalues are local modes of the trailing
edge panel (see also Fig. 12.1B).

First the candidate materials are GFRP unidirectional material oriented at 0◦,
+45◦, −45◦, and 90◦ for the two outer layers whereas the foam material also can
be selected together with the four GFRP candidate materials for the 10 inner layers.
The mass constraint M is set to 24.9 kg which corresponds to 2/3 of the design
domain being filled with foam material.

When solving the optimization problem given by Eq. (12.12) the three lowest
eigenvalues are taken into account in all design iterations. The penalization power p
used in the weight functions in Eq. (12.2) is initially set to 1 and increased by 1 for
every 10 design iterations until p equals 3. The move limit used on all DMO design
variables is 5%, i.e. each design variable may change up to 5% in every design
iteration.

The result of the optimization can be seen in Fig. 12.5. If the GFRP material
has been selected, then the material orientation is shown for each finite element,
whereas white means that the foam material has been selected. The results of the
optimization are shown for the zoomed area defined in Fig. 12.4.

The DMO convergence measure, see Eq. (12.6), is h95 = 0.89 and h99.5 = 0.84.
Thus, in 5/6 of the domain a distinct choice of material is obtained. The convergence
of the lowest eigenvalue is monotonic and is increased from λ1 = 1.05 for the initial
design where all weight factors on the candidate materials have equal values to
λ1 = 2.23 for the optimized design where the mass constraint is active.

It is seen that the GFRP material at the left part of the trailing edge part (at the
transition to the spar cap) should be oriented at 0◦, and the overall distribution of
foam material through the thickness seems reasonable. However, the GFRP material
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Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9

Layer 10 Layer 11 Layer 12

Fig. 12.5 Case 1: Optimized material directions (fiber angles) for maximum buckling load factor
design of 12-layer trailing edge panel of the test section when five DMO variables per patch are
used (foam material together with unidirectional GFRP material oriented at 0◦, +45◦, −45◦, and
90◦). In all elements the candidate material with the largest weight factor is shown. White means
that the isotropic foam material has been selected. Layer 1 is the lower layer and layer 12 is the
top (outer) layer. The results are shown for the zoomed area defined in Fig. 12.4

orientations in the middle of the panel and at the right part at the trailing edge vary
between 0◦, +45◦, and −45◦ in the patches in a somewhat random way, judged by
engineering intuition. This may indicate that the unidirectional GFRP used is not
well suited for giving good resistance against the local buckling modes of the panel.
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Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9

Layer 10 Layer 11 Layer 12

Fig. 12.6 Case 2: Optimized material directions (fiber angles) for maximum buckling load factor
design of 12-layer trailing edge panel of the test section when 4 DMO variables per patch are used
(foam material together with GFRP unidirectional material oriented at 0◦ and 90◦ and GFRP ± 45◦
angle-ply). White means that the isotropic foam material has been selected. Layer 1 is the lower
layer and layer 12 is the top (outer) layer. The results are shown for the zoomed area defined in
Fig. 12.4

Thus, the parametrization is changed such that the unidirectional GFRP mate-
rial is either oriented at 0◦ or 90◦, and then a GFRP ± 45◦ angle-ply candidate
material is introduced. The mass constraint and the other specifications of the opti-
mization problem are unchanged, and the results of this second case of optimization
are shown in Fig. 12.6.
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λ1 = 2.12 λ2 = 2.16

λ3 = 2.29

Fig. 12.7 The three lowest buckling modes for the optimized design (case 2)

In this second case the DMO convergence measure is h95 = 0.98 and h99.5 =
0.96. Thus, a distinct choice of material is obtained nearly everywhere in the design
domain which is better than in case 1. Furthermore, the selected GFRP candidate
materials are in better agreement with engineering intuition now.

Again it is seen that the GFRP material at the left part of the trailing edge part
should be oriented at 0◦, but due to the removal of +45◦ and −45◦ unidirectional
GFRP as candidate materials, the region of 0◦ GFRP is extended to the middle of the
panel. The distribution of foam material through the thickness is approximately as
before. In comparison to case 1, a much more clear distinct spatial distribution of the
GFRP material is obtained, and it is clear that the ±45◦ angle-ply should be used at
the trailing edge. The selection of ±45◦ angle-ply GFRP has also been observed for
compliance optimization problems in shear dominated areas of the design domain,
and looking at the buckling modes of the optimized design in Fig. 12.7, the material
distributions seem very reasonable.

The 0◦ GFRP material at the left part of the trailing edge part gives a stiff con-
nection to the stiff spar cap section, and the ±45◦ angle-ply dominated layup at the
trailing edge yields good resistance against the local buckling modes.

The convergence of the lowest eigenvalue is again monotonic and is increased
from λ1 = 0.93 for the initial design where all weight factors on the candidate mate-
rials have uniform values to λ1 = 2.12 for the optimized design where the mass
constraint is active. The buckling load factor in case 1 where only unidirectional
GFRP is used together with foam material is actually a little higher, but this is
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Fig. 12.8 Iteration history for the three lowest buckling load factors for case 2
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Fig. 12.9 Iteration history for the mass constraint for case 2

mainly because of a non-converged solution in 1/6 of the design domain in case
1. In these non-converged areas the material used is a mixture of several candidate
materials which typically yields a better performance than the ±45◦ angle-ply used
in case 2.

The iteration history for the three lowest eigenvalues is shown in Fig. 12.8 and
for the mass constraint in Fig. 12.9.

The mass constraint M of 24.9 kg for the trailing edge panel is violated for the
initial design where all weight factors on the candidate materials have equal values
in order not to favor any of the candidate materials, and it becomes active after
42 iterations where the design optimization process more or less has converged.
A larger move limit on the design variables could be used in order to reduce the
number of iterations, but this might give some oscillations in the iteration history
for the objective function.
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12.6 Conclusion

The problem of multi-material topology design of composite laminated structures
has been investigated using the so-called Discrete Material Optimization (DMO)
approach. The design problem is initially stated as a discrete optimization problem
involving the specification of material type and orientation of ply layers in the stack-
ing sequence where the ply angles are limited to a discrete set such as 0◦, ±45◦,
and 90◦. The candidate materials may be FRP materials (with given orientations)
together with isotropic materials like foam, and the multi-material design problem
is converted to a continuous problem by introducing weight factors that interpolate
between candidate materials. Penalization techniques together with gradient based
optimization methods are used to obtain a distinct choice of material everywhere in
the design domain.

The DMO method has been used for buckling multi-material topology optimiza-
tion of a wind turbine blade test section. The test section is modeled using a shell
finite element model, and the trailing edge part has been redesigned with the objec-
tive of maximizing the buckling load factor of the test section, taking a weight
constraint into account. The trailing edge part has been topology optimized using
2/3 of foam material and 1/3 of GFRP material. The material distribution results
and the convergence history of the design optimization demonstrate, that the DMO
approach can be a strong preprocessing tool for multi-material topology optimiza-
tion of composite structures in the early design phase, where the general topology
design of structures should be decided before more detailed designs are investigated.

Acknowledgements Thanks to our former colleague, Assistant. Professor. Jan Stegmann, for our
joint work on development of the Discrete Material Optimization (DMO) approach.
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Chapter 13
Computation of Effective Stiffness Properties
for Textile-Reinforced Composites Using X-FEM

M. Kästner, G. Haasemann, J. Brummund, and V. Ulbricht

Abstract The macroscopic material behaviour of novel textile-reinforced com-
posites is defined by its constituents (micro-level) and the design of the textile
reinforcement (meso-level). Consequently, a multi-scale approach to the prediction
of the material behaviour is necessary because only in this vein the adaptability of
the textile reinforcement can be used to develop materials whose features can be
adjusted precisely to certain applications.

Due to the difference in size between the macroscopic component and the fine-
scale material structure a direct modelling of the reinforcement in a structural
analysis is not reasonable.

Therefore, a decoupled computational homogenization procedure is applied.
Based on a representative volume element (RVE) of the reinforcing architecture
effective material properties C̄i jkl for a macroscopically homogeneous continuum
are computed. These properties are used to characterize the effective linear elastic
material behaviour of the composite in a structural analysis and allow for efficient
component analysis and design.

In the process of generating numerical models for RVE of textile-reinforced
composites the extended finite element method (X-FEM) is applied and an auto-
mated modelling procedure is developed. The computed effective stiffness values
are compared to experimental data from ultrasonic and standard tensile tests.

13.1 Homogenization

The macroscopic mechanical behaviour of textile-reinforced composite structures is
mainly governed by its constituents on the meso- and micro-scale. In this hierarchi-
cal structure the micro-level represents the smallest scale with explicit consideration
of single fibres and matrix that form the reinforcement on the meso-level (Fig. 13.1).

M. Kästner, G. Haasemann, J. Brummund, and V. Ulbricht
Technische Universität Dresden, Institute of Solid Mechanics, D-01062 Dresden, Germany,
e-mail: Markus.Kaestner@tu-dresden.de
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Meso-levelMicro-level Macro-level

Yarn+MatrixFibre+Matrix Component
Fig. 13.1 Multi-scale approach to modelling of composite structures

Together with pure matrix fractions the reinforcing architecture – modelled as
homogeneous yarn – is the most important feature of a meso-scale RVE.

In order to motivate the idea of homogenization consider the mechanical bound-
ary value problem given by the static equilibrium

σi j,i + f j = 0; σi j = σ ji ∀ xi ∈Ω (i, j = 1 . . .3) (13.1)

with the symmetric stress tensor σi j and the body force vector f j; the linear strain-
displacement relations

εi j =
1
2

(ui, j + u j,i) ∀ xi ∈Ω (13.2)

with the symmetric strain tensor εi j and the displacement vector ui as well as
HOOKE’s law

σi j = Ci jklεkl ∀ xi ∈Ω (13.3)

with the fourth order elasticity tensor Ci jkl . In addition to the governing equations
suitable boundary displacements ũ j

u j = ũ j ∀ xi ∈ ∂Ωu (13.4)

or tractions t̃m

σlmnl = t̃m ∀ xi ∈ ∂Ωt (13.5)

have to be applied to the boundary ∂Ω of the structure Ω (Fig. 13.2) where ∂Ωu ∪
∂Ωt = ∂Ω and ∂Ωu ∩∂Ωt = ∅.

For heterogeneous media the elasticity tensor Ci jkl will depend on the location.
In combination with a pronounced material structure on the micro- and meso-level
this will result in an extensive modelling effort and unfavourable fine meshes if the
local heterogeneity is to be modelled explicitly in the structural analysis.

However, the hierachical character of the problem with clearly separated length
scales is predestinated for the application of computational homogenization tech-
niques.
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Ω Ω

Fig. 13.2 Computation of effective macroscopic properties C̄i jkl for a locally heterogeneous
material

Using the homogenization approach for periodic media the original locally
heterogeneous material is replaced by a homogeneous medium with an effective
elasticity tensor C̄i jkl (Fig. 13.2). The original problem in Eqs. (13.1)–(13.3) will
then be approximated by

σ̄i j,i + f̄ j = 0; σ̄i j = σ̄ ji

ε̄i j = 1
2 (ūi, j + ū j,i)

σ̄i j = C̄i jkl ε̄kl

⎫⎪⎪⎬⎪⎪⎭ ∀ xi ∈Ω (13.6)

and boundary conditions according to Eqs. (13.4) and (13.5)

ū j = ũ j ∀ xi ∈ ∂Ωu (13.7)

σ̄lmnl = t̃m ∀ xi ∈ ∂Ωt (13.8)

where σ̄i j and ε̄i j are the associated macroscopic stress and strain fields. In order to
obtain a sufficient approximation of the original solution it has to be ensured that
the characteristic dimensions or wavelengths of two consecutive scales satisfy

ln+1

ln
� 1 (13.9)

There are different theoretical foundations for the prediction of effective proper-
ties C̄i jkl based on a RVE entirely typical for the heterogeneous fine-scale material
structure, e.g. asymptotic expansion of field quantities [10, 14] or energy averag-
ing theorems [7]. Here the latter, namely the equivalence of the volume average of
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elastic strain energy density {U} in the RVE V and in the homogeneous macroscopic
continuum Ū

{U} = Ū (13.10)

{U} =
1
2
{σi jεi j}; {. . .} =

1
V

∫
V

. . . dV (13.11)

Ū =
1
2
σ̄i j ε̄i j, (13.12)

will be focused.

13.1.1 Boundary Conditions and Deformation Modes

Assuming that a RVE for the considered reinforcing structure has been identified,
the determination of effective material properties requires the equivalence criterion
to be evaluated numerically. To this end suitable boundary conditions are applied to
the RVE defining deformation modes with either prescribed average stress {σi j} =
σ̄i j or average strain {εi j} = ε̄i j.

The applied boundary conditions are chosen to fulfill the identity{
σi jεi j

}
= {σi j}{εi j} = σ̄i j ε̄i j (13.13)

also known as HILL-MANDEL-Lemma. In general there are three different boundary
conditions for which Eq. (13.13) is satisfied:

• Constant tractions
t j = σ̄i jni (xk) ∀ xi ∈ ∂V (13.14)

• Linear displacements
ui = ε̄i jx j ∀ xi ∈ ∂V (13.15)

• Periodic displacements in conjunction with antiperiodic tractions

ui = ε̄i jx j + uP
i

uP
i periodic

ti anti-periodic

⎫⎪⎪⎬⎪⎪⎭ ∀ xi ∈ ∂V (13.16)

where ni is the outward normal and ti is the traction vector on the boundary ∂V of
the RVE.

While one of the average values in Eq. (13.13) is well-defined by the applied
boundary conditions 13.14–13.16, the second average is obtained from the numeri-
cal solution of prescribed deformation modes. A sufficient number of such deforma-
tion modes has to be evaluated in order to be able to compute the desired effective
material properties using the macroscopic constitutive relations
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σ̄i j = C̄i jkl ε̄kl or ε̄kl = S̄i jklσ̄i j (13.17)

where S̄i jkl is the macroscopic compliance tensor.

13.1.1.1 Periodic Deformation Modes

Here periodic displacement boundary conditions 13.16 are applied to generate the
aforementioned deformation modes. These boundary conditions consist of a linear
part which is equivalent to Eq. (13.15) and creates an average strain

ε̄i j = {εi j} =
1
V

∫
V

εi j dV (13.18)

in the RVE. Furthermore, they allow for a periodic deviation uP
i from the linear

boundary displacement which does not affect the average strain.
For being able to compute the effective material properties easily, six deformation

modes ε̄εε (kl) with only one non-zero component in the effective strain tensor are used.
They are given by

ε̄εε(kl) =
1
2
ε̄
(
δpkδql + δplδqk

)
ep ⊗ eq (13.19)

where ε̄ is a scalar defining the magnitude of the non-zero strain component.
The resulting deformation modes for linear and periodic displacement boundary
conditions are illustrated in Fig. 13.3.

(a) Linear boundary conditions (b) Periodic boundary conditions

Fig. 13.3 Deformation modes resulting from linear and periodic displacement boundary conditions
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13.1.1.2 Periodic Boundary Conditions for Symmetric RVE

RVE of textile-reinforced composites often exhibit symmetries that can be employed
to improve the efficiency of homogenization techniques. Compared to well-known
symmetry boundary conditions in structural analysis the periodicity requirements of
the solution have to be taken into account here.

Consider the following rectangular solid RVE with a single symmetry plane at
x1 = 0, dimensions ∆x1 = 2xR, ∆x2, ∆x3, volume V and surface ∂V . Two mirrored
coordinate systems x̂i and x̃i are introduced to formulate the symmetry requirements
on displacements and material properties (Fig. 13.4).

Starting from a decomposition of the virtual displacement field into a symmetric
(δuS) and an anti-symmetric (δuA) part

δu = δuS + δuA with
δ ũS(x̃m) = δ ûS(x̂m)
δ ũA(x̃m) = −δ ûA(x̂m)

}
x̃m = x̂m (13.20)

and assuming a symmetric material structure in the RVE (Fig. 13.4)

C̃i jkl(x̃m) = Ĉi jkl(x̂m); x̃m = x̂m (13.21)

it can be shown that the virtual work in equilibrium, neglecting all body forces,

δW =
∫
V

σlmδεlm dV −
∮
∂V

tmδum dO = 0 (13.22)

can be separated into two parts associated with the symmetric (S) und anti-symmetric
(A) boundary value problem respectively

δW = δW S + δWA = 0 (13.23)

Fig. 13.4 RVE with a single
symmetry plane at x1 = 0

x1

x1x = xRx1x = -xR x1x = 0

+V

+V

 = x 1x1

x2=  x2 = x2

x3= x3= x 3

x = x
x1x = xx = xRx1x = xRx = x
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Additionally, the calculations show that it is completely sufficient to examine one
half of the RVE as∫

V

σlmδεlm dV = 2
∫

V+

(
σS

lmδε
S
lm +σA

lmδε
A
lm

)
dV and (13.24)

∮
∂V

tmδum dO = 2
∫
∂V+

(
tS
l δuS

l + tA
l δuA

l

)
dO (13.25)

where V+ is the part of the RVE between x1 = 0 and x1 = xR. ∂V+ is the surface
of V+ excluding the symmetry plane x1 = 0 (Fig. 13.4). After the application of
GAUSS’ theorem to Eq. (13.24) the local equilibrium and the symmetry boundary
conditions at x1 = 0 can be obtained from Eq. (13.23). It has to be mentioned that
the boundary conditions depend on whether the deformation mode is symmetric
or anti-symmetric with respect to the considered symmetry plane (i, j = 1 . . .3; α,
β = 2, 3):

• Deformation mode symmetric with respect to x1 = 0

σS
i j,i = 0 ∀ xi ∈V + (13.26)

uS
1(x1 = 0,xα) = 0 σS

1β (x1 = 0,xα) = 0 (13.27)

• Deformation mode anti-symmetric with respect to x1 = 0

σA
i j,i = 0 ∀ xi ∈V + (13.28)

uA
β (x1 = 0,xα) = 0 σA

11(x1 = 0,xα) = 0 (13.29)

By combining the required periodicity of uP
i resulting from the boundary condi-

tions 13.16
uP

i (−xR,xα) = uP
i (xR,xα) (13.30)

with the required symmetry or anti-symmetry of the displacement field in the RVE,
the following boundary conditons for x1 = xR can be derived:

• Deformation mode symmetric with respect to x1 = 0

uP
1 (x1 = xR,xα) = 0 (13.31)

• Deformation-mode anti-symmetric with respect to x1 = 0

uP
β (x1 = xR,xα) = 0 (13.32)

The results for a simply symmetric RVE can be extended to RVE with multiple
symmetry planes. Hence, for a RVE symmetric to x1 = 0, x2 = 0 and x3 = 0 it is
sufficient to model and to compute only one eighth of the original problem.
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13.1.2 Effective Properties

After the application of boundary conditions the deformation modes mentioned
above are solved numerically using finite element analysis. Two different approaches
to the determination of the required effective material properties of the homoge-
neous medium will be outlined in brief.

13.1.2.1 Averaging Local Stress Distributions

Considering the applied deformation modes 13.19 it is found that the effective stiff-
ness properties of the homogeneous macroscopic continuum can be computed by

C̄i jkl =
1
ε̄

{
σi j

(
ε̄εεkl
)}

=
1
ε̄V

∫
V

σi j

(
ε̄εεkl
)

dV (13.33)

where σi j (ε̄pq) are the local stress distributions in the RVE for deformation mode
ε̄εε(kl). The integration in Eq. (13.33) is done numerically with respect to the used
element type and element geometry. Altogether the solution and evaluation of six
deformation modes is sufficient for the computation of all 21 independent elements
of C̄i jkl .

13.1.2.2 Reaction Forces at Master Nodes

Because the evaluation of local stress distributations in the RVE has to be done
with respect to the used element type and geometry of every single element, a more
efficient procedure using only reaction forces and applied displacements at a set of
master nodes has been developed (Fig. 13.5).

The master nodes Mx+
1 , Mx+

2 and Mx+
3 are used to apply the displacement bound-

ary conditions described above. The associated reaction forces Fx+
1 , Fx+

2 , Fx+
3 at the

surfaces x+
1 , x+

2 , x+
3 of the RVE can be used to compute the effective properties

without averaging the local stress fields.
After converting the volume average of stress into a surface integral

σ̄i j = {σi j} =
1
V

∫
V

σi j dV =
1
V

∫
∂V

t jxi dO (13.34)

and the evaluation of Eq. (13.34) assuming a rectangular solid RVE a relation
between stress average and reaction forces can be derived and the effective prop-
erties are found to be

C̄i jkl =
1

Ax+
i ε̄

F
x+

i
j

(
ε̄εεkl
)

(13.35)
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Fig. 13.5 Computation of effective properties from reaction forces

with the areas of the associated surfaces

Ax+
1 = ∆x2∆x3; Ax+

2 = ∆x1∆x3; Ax+
3 = ∆x1∆x2 (13.36)

whereat ∆x1, ∆x2 and ∆x3 are the dimensions of the RVE.
Hence, the effective properties can be computed independently from element

type and geometry which is very efficient and flexible.

13.1.3 Summary

As a summary an outline of the general homogenization procedure is given below.

1. Identification and modelling of RVE
2. Application of suitable boundary conditions to generate characteristic deforma-

tion modes
3. Numerical solution to the deformation modes
4. Computation of effective properties from averaging of local field quantities

(Eq. (13.33)) or evaluation of reaction forces (Eq. (13.35))

13.2 Application of the eXtended Finite Element Method
(X-FEM) to Modelling of Textile-Reinforced Composites

As a result of the complex geometry of the textile reinforcing architecture, generat-
ing a finite element (FE) model of the RVE is a particular problem. The application
of common FE methods tends to result in an extensive modelling and meshing effort
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including problems related to distorted element shapes and poor numerical condition
of the system of equations to be solved.

In order to improve flexibility and efficiency of the homogenization technique
an alternative modelling strategy is examined. For this purpose X-FEM – whose
major benefits such as regular meshes and reduced meshing effort while retaining all
advantages of the classical finite element approach have been demonstrated recently
[1, 6, 9, 12, 13, 16] – is applied to modelling of composite materials here.

13.2.1 Fundamentals

Based on the partition of unity technique [11] X-FEM offers the possibility to model
arbitrary discontinuities using regular finite element meshes that do not need to
match interfaces, a fact that is very advantageous in modelling of cracks. Various
extensions include enrichment functions for the crack tip [19], the application of
higher order elements [15], geometrically nonlinear formulations [3], as well as the
simulation of 3D [4, 5, 18] and bi-material cracks [17].

Refering to textile-reinforced composites the indepence of mesh geometry and
internal discontinuities implies that element boundaries do not conform to a material
interface. Instead, the mechanical behaviour which is characterized by a discontinu-
ity of strain perpendicular to the interface ∂G (Fig. 13.6)[

ε̃1 j
]
=
[
ε̃ j1
] �= 0[

ε̃αβ
]

= 0
i, j = 1,2,3; α, β = 2,3 (13.37)

with ε̃i j = cikc jlεkl ; ci j = ẽi · e j; ẽ1 = n; [a] = a+ − a− is represented by a local
enrichment of the FE displacement approximation within the element

uX-FEM =∑
i

Niui︸ ︷︷ ︸ + ∑
j∈E

Nja jF︸ ︷︷ ︸
FEM Enrichment

(13.38)

Fig. 13.6 Interface with strain
discontinuity
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Ordinary finite elements

X-elements

Nodes with additional
degrees of freedom

Material interface

Fig. 13.7 Material interface with X-elements and nodes with additional degrees of freedom

The first summation corresponds to the known approximation of the displace-
ment field u as product of shape functions Ni and a vector of degrees of freedom ui

at node i. The enrichment of the original FE approximation consists of additional
degrees of freedom a j as well as an enrichment function F which accounts for the
character of the interface. E is the set of nodes with additional degrees of free-
dom. From Fig. 13.7 it can be observed that additional degrees of freedom are only
introduced at nodes whose support is intersected by a material interface. A suitable
choice of the enrichment function F allows for modelling of strong (discontinuous
displacements) and weak (discontinuous strains) discontinuities at an interface [1].

The practical realization of this idea is accomplished by defining a new element
type called X-element which replaces the original finite elements intersected by
a material interface (compare Fig. 13.7). The implementation is realized using the
user-subroutine feature of the commerical FE-code MARC [9]. The user-subroutine
defining the element type is called during the assembly of the global stiffness matrix
and computes element stiffness matrices for all X-elements in the mesh. In addi-
tion, the routine performs stress and strain recovery as well as the determination
of element reaction forces which are needed for the computational homogenization
procedure (Eq. (13.35)).

13.2.2 Definition of X-elements

Based on the enriched displacement approximation (Eq. (13.38)) an element stiff-
ness matrix has to be derived. Computing this matrix requires a suitable enrichment
function as well as an algorithm for locating the material interface within the regular
non-conforming finite element mesh.
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In order to locate a given interface in the domain of the X-element the signed
distance ϕi between the interface and node i is computed whereat the sign of ϕi

depends on the position of the node with respect to the interface [16].
The distribution ϕ(x) in the element can be interpolated using the standard shape

functions
ϕ (x) =∑

i
Niϕi (13.39)

The position of a material interface Γ is then given by ϕ(x) = 0.
Due to the interpolation which limits the accuracy of the interface approximation

the mesh has to be sufficiently refined in order to locate an interface precisely.
The interpolated distance function ϕ(x) is of particular importance for the

formulation of enrichment functions. At a material interface a sudden change
of coefficients of the partial differential equations occurs. This implicates a dis-
continuity of strain fields perpendicular to the interface as described in equation
(Eq. (13.37)).

Looking at the interpolated values of the distance function ϕ(x) it can be seen
that the function itself and its first partial derivatives are continuous over the
interface.

Using the absolute value of the interpolation (Eq. (13.39)) is a smart way to
introduce the desired discontinuity [16]

F̃ (ϕ (x)) =

∣∣∣∣∣∑i Niϕi

∣∣∣∣∣ (13.40)

On the other hand the influence of the enrichment function F̃ is not limited to
the region of a single element which is unfavorable for the definition of a special
X-element that is to be used together with standard elements in the same mesh. In
this case an enrichment function that is zero at element boundaries connected to
standard elements is desired. As suggested in [12] this can be ensured by choosing
the enrichment function

F (ϕ (x)) =∑
i

Ni |ϕi|−
∣∣∣∣∣∑i Niϕi

∣∣∣∣∣ (13.41)

which is plotted for a straight interface intersecting a 2D plane element in Fig. 13.8.
After all essential data such as material properties, the location of the interface in

each element defined by the distance function values ϕi at nodes, etc. are obtained
during pre-processing, the integration of the element stiffness matrix

Ke =
∫
Ω e

BT DBdΩ e (13.42)

is performed where D is a matrix representation of Ci jkl .
Due to the enrichment the matrix B contains partial derivatives of the enrichment

function which are discontinuous over the interface as well as different material
properties. In order to handle the discontinuous integrand, the element domainΩ e is
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Fig. 13.8 Plot of the enrich-
ment function F (ϕ (x)) over
a 2D plane element domain
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Fig. 13.9 Integration subdomains

divided into ns integration subdomainsΩ s
i applying DELAUNAY hex-tet subdivision

in three dimensions ∫
dΩ e ⇒

ns

∑
i=1

∫
dΩ s

i (13.43)

as shown in Fig. 13.9.
After the decomposition each subdomain is assigned with the right material prop-

erties and the integration of the element stiffness matrix is carried out using standard
GAUSS quadrature rules. Finally, the element stiffness matrix is passed into the
commerical FE-code where the global stiffness matrix is assembled.

When modelling textile-reinforced composites – mainly due to the combination
of high fibre volume fractions and complex reinforcing architectures – the problem
of branching material interfaces is observed. As shown in Fig. 13.10a the material
interface between warp and weft yarn opens into two yarn-matrix interfaces.

Therefore, a second new element type called 2X-element is introduced which can
handle two branching material interfaces in a single element domain. Numerically
the case of two material interfaces in a single element is treated by introducing
another set of additional degrees of freedom bi at nodes whose support is cut by
both interfaces leading to a further enrichment of the displacement approximation

uX-FEM =∑
i

Niui +∑
j

Nja jF1 (ϕ1(x))+∑
k

NkbkF2 (ϕ2(x)) . (13.44)
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Branching interfaces
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x3

Weft thread Warp thread

(a) Geometry model of reinforce-
ment with branching interfaces

Ordinary finite elements

X-elements

2X-elements

xx
12

x 3

(b) X-FEM mesh with 2X-elements

Fig. 13.10 Modelling branching interfaces

This is a consistent extension to Eq. (13.38) and therefore the same procedures
as for X-elements with a single interface can be applied. The particular enrichment
functions F1 and F2 correspond to Eq. (13.41) but they now depend on two different
distance functions – one for each interface

F1 = F1 (ϕ1 (x)) and F2 = F2 (ϕ2 (x)) . (13.45)

This approach is similar to techniques proposed for branching and intersecting
cracks [1, 2]. During the assembly of the global stiffness matrix one has to deal
with a different number of degrees of freedom at a single node. If both, X- and 2X-
elements, are present in the mesh, this problem is handled by constraint equations
to ensure the continuity of the displacement approximation. They are applied during
an automated model generation procedure which is briefly outlined in the following.

13.2.3 Automated Model Generation

In order to allow for an efficient simulation strategy for textile-reinforced compos-
ites the modelling process has to be automated to large extent. For that purpose a
modelling procedure has been developed that automatically converts the geometry
of the reinforcing structure into a X-FEM mesh of the RVE. Starting from a 3D geo-
metric model a rectangular solid RVE domain is filled with finite elements layer by
layer (Fig. 13.11). Depending on the number of interfaces in the generated elements
they become ordinary finite elements, X-elements or 2X-elements. Details of the
procedure can be found in [6].

In addition to the element formulation, routines that accomplish the automatic
detection and location of material interfaces, perform the element subdivision,
assign material properties, determine the orientation of anisotropic material



www.manaraa.com

13 Effective Stiffness Properties of Textile-Reinforced Composites 275

(a) 3D geometry (b) Model generation

Ordinary finite elements

X-elements

(c) X-FEM RVE-model

Fig. 13.11 Generation of numerical X-FEM RVE-model in layers

Table 13.1 Material properties of glass fibre (GF) and polypropelene (PP) matrix

Material E[GPa] ν [−]

GF 73 0.25
PP 1.22 0.4

properties in the integration subdomain and compute the values of the enrichment
function at each integration point are required.

The particular challenge of these automatic procedures is to cover all possible
geometric configurations of material interfaces in the RVE, to assign additional
degrees of freedom to the correct interfaces as well as to accurately assemble the
global stiffness matrix.

13.3 Effective Material Properties of GF-PP Woven Fabric

As illustrated in Fig. 13.1 the considered composites feature a hierarchical material
structure with three different length scales. In order to find effective macroscopic
material properties two homogenization steps are performed. While in the first
step – the micro-meso homogenization – the effective stiffness of the yarn is
determined, the meso-macro homogenization in step two provides the effective
macroscopic stiffness. The necessary input data consist of the material properties
of glass fibre (GF) and polypropelene (PP) matrix listed in Table 13.1 as well as two
idealized geometry models for yarn and reinforcing architecture which are derived
from polished micrograph sections.

13.3.1 Effective Yarn Properties

As stated above, the assumption of a homogeneous yarn forming the texile rein-
forcing structure on the meso-scale is an idealization. Especially for composites
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276 M. Kästner et al.

Fig. 13.12 Identification of yarn cross-sections in a micrograph of a GF-PP woven fabric (meso-
scale) and fibre arrangement (micro-scale)
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PP

(a) Numerical model using symmetry
boundary conditions

Ordinary finite elements
X-elements

xx 13

x 2

(b) X-FEM mesh

Fig. 13.13 Idealized fibre arrangement and numerical model for micro-meso homogenization

Table 13.2 Nonzero coordinates of C̄ yarn
i jkl [GPa] (fibre volume fraction v yarn

F = 0.8)

Stiffness [GPa] C̄1111 C̄2222 C̄3333 C̄1122 C̄1133 C̄2233 C̄2323 C̄1313 C̄1212

FEM 15.82 15.82 61.85 6.43 6.12 6.12 3.72 3.72 4.70
X-FEM 15.82 15.82 61.85 6.52 6.12 6.12 3.80 3.80 4.70

consolidated from commingled glass-thermoplastic hybrid yarns no pure fibre
domains can be identified. Instead the mesoscopic yarn represents a fibre-matrix
mixture with a considerably high fibre volume fraction (Fig. 13.12).

Using the idealization of a hexagonal array with equally spaced fibres on the
micro-scale effective meso-scale properties have to be computed for the yarn, result-
ing in a transversly isotropic material behaviour. Modelling of the fibre array is
performed applying X-FEM and symmetry boundary conditions during the homog-
enization process (Fig. 13.13).

The results of the micro-meso homogenization are listed in Table 13.2. The com-
parison to a conventional FE model demonstrates a very good agreement of both
modelling approaches.

13.3.2 Effective Properties of Plain Weave Fabric

The geometric model of the woven reinforcement is deduced from different micro-
graphs. The mathematical description of cross-section as well as the arrangement
of yarns in the RVE is defined by trigonometric functions. In order to form a solid
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RVE, the textile reinforcement illustrated in Fig. 13.14 is enclosed in a cubic matrix
box resulting in an overall volume fraction of vF = 0.35 and a lamina thickness of
0.34 mm.

Based on the given geometry, an X-FEM model is created using the automatic
modelling strategy. In this process special attention has to be drawn to the orientation
of the material prefered direction which is determined from the geometry model for
each element containing a yarn fraction. Figure 13.15 shows the resulting mesh with
ordinary finite elements, X- and 2X-elements.

Due to the application of symmetry boundary conditions only one quater of the
original RVE has to be modelled. Table 13.3 presents a comparison of the numer-
ically determined effective stiffness properties to those obtained from ultrasonic
measurements [8].

Fig. 13.14 Idealized geome-
try model of a woven fabric
with branching interfaces

xx 12

x 3

Fig. 13.15 X-FEM RVE
model for woven fabric

xx 12

x 3

Ordinary finite elements

X-elements

2X-elements

Table 13.3 Comparison of effective stiffness properties C̄i jkl for a woven GF-PP composite
obtained from homogenization and ultrasonic tests (unlisted C̄i jkl = 0)

Stiffness [GPa] C̄1111 C̄2222 C̄3333 C̄1122 C̄1133 C̄2233 C̄2323 C̄1313 C̄1212

Homogenization 15.8 15.8 4.5 2.9 2.4 2.4 0.8 0.8 1.5
Ultrasonic test 15.5 15.5 9.0 –a 3.7 4.0 2.6 2.6 –a

a Stiffness property incapable of measurement



www.manaraa.com
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Table 13.4 Comparison of engineering constants computed from numerical and experimental
effective stiffness properties C̄i jkl with results from standard tensile tests

Property Ē11[GPa] Ḡ12[GPa] ν̄12[-]

Homogenization 14.37 1.50 0.11
Ultrasonic test 13.45a –b 0.38a

Tensile test 13.05 1.11 0.09

a Results for assumed stiffness property value C̄1122 = 4.0 GPa
b Arbitrary as Ḡ12 = C̄1212

13.3.3 Experimental Verification

The comparison of numerically determined effective stiffness properties to those
measured by ultrasonic tests in Table 13.3 demonstrates a very good agreement of
the tensile stiffness C̄1111 and C̄2222.

On the other hand a quite significant difference is observed for the transverse and
shear properties which are subject to further investigation on the influence of scatter
in the input data as well as the geometric assumptions made.

In addition, the effective stiffness properties obtained from homogenization and
ultrasonic testing have been converted into the well-known engineering constants.
In order to be able to invert the stiffness matrix a reasonable estimate for C̄1122

in Table 13.3 has been made. The properties characterizing the in-plane material
behaviour are given in Table 13.4. They are compared to results from tensile testing.
This comparison reveals a general correlation between experimental and numerical
results. On the other hand a fairly large deviation of the two experimental testing
methods can be observed.

13.4 Conclusion

In this work an efficient modelling strategy for textile-reinforced composites has
been proposed. A computational homogenization technique based on the equiva-
lence of strain energy in a locally heterogeneous material and an effective homoge-
neous medium is applied. In addtion an X-FEM approach to handle the complexity
of textile reinforcement is developed, resulting in an algorithm for automated
modelling of RVE based on a 3D geometric model.

As it was demonstrated in the previous section, the main advantage of simulation
over experimental tests is that all stiffness properties required for a structural analy-
sis can be quantified more efficiently. In contrast to procedures that identify param-
eters of an assumed constitutive relation from experiments the material behaviour
is predicted using geometrical and physical characteristics of two different length
scales.
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In order to improve the flexibility of the approach it has to be extended to more
complex weft-knitted fabrics. Furthermore, the combination of X-FEM and non-
linear material behaviour will be adressed in the future.
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6. Haasemann G, Kästner M, Ulbricht V (2006) Multi-Scale modelling and simulation of textile-
reinforced materials. CMC 3:131–146

7. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys
Solids 11:357–372
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Chapter 14
Development of Domain Superposition
Technique for the Modelling
of Woven Fabric Composites

Wen-Guang Jiang, Stephen R. Hallett, and Michael R. Wisnom

Abstract A Domain Superposition Technique (DST) is proposed for the simulation
of woven fabric composites. Instead of modelling the tows and the likely degen-
erated resin pocket regions among tows explicitly, DST separately models the tow
domain and the global domain which are both non-degenerated, and can thus be
easily discretised using the traditional solid elements. During the solution process,
the two domains are superimposed by coupling them together to produce the exact
results. Numerical simulation shows that the results of DST correlate very well with
the results of conventional finite element analysis.

14.1 Introduction

Woven fabric composites (WFC) present various attractive aspects such as light
weight, low fabrication costs, ease of handing and high adaptability when compared
to tape laminates and more traditional engineering materials. With these cost and
performance advantages, WFC have received increased attention and popularity in
many structural applications in recent years.

Literature reviews [2, 8] show that finite element (FE) and theoretical analysis
methods are powerful tools for studying the mechanical properties of WFC. The
micro-structure is, however, complex in nature and the parameters controlling the
mechanical properties are numerous. Various finite element techniques and assump-
tions have been proposed for simplifying the analysis. Most of the models for WFCs
are based on the definition of a unit cell geometry and include the major architectural
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parameters in predicting the mechanical properties. One of the fundamental diffi-
culties faced in modelling the detailed unit cell using solid elements is to build a
geometry free from interpenetration at tow crossovers. Furthermore, a very fine FE
mesh is required to deal with some “not-quite-relevant” details, i.e. the degenerated
volumes of the resin pockets. This can lead to very large FE models exceeding a
million of degrees of freedom to model a single unit cell, which is only a very small
part of the WFC structure. Cox et al. [1, 7, 9, 10] developed a FE method, known
as the ‘binary model’, for simulating woven textile composites. In this model, the
axial properties of tows were represented by two-noded line elements possessing
axial rigidity, while the transverse stiffness, shear stiffness, and Poisson’s effect of
the composite were represented by 8-node solid ‘effective medium’ elements. Due
to the simplified assumptions, a complex parameter calibration is needed to yield
good correlation which could still be mesh size dependent. Another significant sim-
plification is that the detailed tow geometric features are omitted, making the actual
stress calculation process quite complex.

In this paper a Domain Superposition Technique (DST) proposed by the first
author [5] is presented. Instead of modelling the tows and the likely degenerated resin
pockets explicitly, DST meshes the tow domain and the global domain separately,
which are both non-degenerated. Both domains are modelled using solid elements
and the final result is simply the superposition of the two domains using coupling
equations. In contrast to other mesh superposition methods which require iterative
procedures [3, 4, 11], DST is conceptually concise and much simpler to implement.

14.2 Domain Superposition Technique

A typical DST FE mesh for a representative volume element (RVE) is shown in
Fig. 14.1. The implementation of DST requires two essential technical strategies.
The first is the derivation of the correct material property configurations of the two
domains; the second is the establishment of the coupling relationships between the
two domains. For the material models, the actual matrix material properties are
used for the elements of the global domain and the elements in the tow domains
use a modified mechanical model, i.e. the constitutive stiffness matrix is based on
the difference between the actual tow material and that of the matrix material. The
independent tow FE meshes need to be coupled onto the global FE mesh and this is
implemented by a constraint equation coupling technique. This ensures that the two
phases of the superimposed materials in the tow space have the equivalent mechan-
ical properties of the actual tows; the remaining matrix material domain has the
unchanged matrix material properties. Compared with the traditional FE models of
WFC, the DST has the following advantages:

• Every tow may be independently discretised using the traditional eight-noded
solid element geometry by simply dragging a cross-sectional area pattern along
the centre line of the tow. Each element has edges parallel to the centre line of
the tow which can be conveniently used for material orientation.
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Warp towWeft tow

+

=

Tow meshes Global mesh

Superimposed mesh
for DST analysis

Fig. 14.1 An example of DST meshes for a RVE of a plain weave composite

• The global space can be easily meshed using solid elements without the need to
consider the very complex material distributions within the domain.

• The actual matrix material space is not modeled explicitly, in contrast to the tradi-
tional FE analysis, which requires significant computational resources to handle
this.

• Defects in the geometric model, e.g. the difficult-to-avoid interpenetrations at tow
crossovers from the creation of the geometric models, can be tolerated in DST.

• Model size can be reduced.

14.2.1 Coupling Technique

The first essential numerical technique related to the implementation of DST is the
coupling of the global matrix FE mesh with the reinforcement tow mesh to ensure
that the coincident points between the two phases of materials can have the same dis-
placement during deformation [5]. This is the continuity/compatibility condition of
DST, which must be correctly dealt with in order to establish an accurate numerical
model.

Considering a general three-dimensional solid element, the coordinate interpola-
tions of a given point (x, y, z) inside the element are

x =
m

∑
i=1

Nixi; y =
m

∑
i=1

Niyi; z =
m

∑
i=1

Nizi (14.1)

where xi, yi, zi are the coordinates of the m element nodes in global Cartesian coor-
dinate system. The interpolation functions Ni(ξ ,η ,ζ ) are defined in the natural
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coordinate system of the element, which has variables ξ ,η ,ζ that each vary from
−1 to +1. The fundamental property of the interpolation function Ni is that its value
in the natural coordinate system is unity at node i and zero at all other nodes.

To enhance the continuity between the two material domains, it is preferable that
the same element formulation be used for both domains. In this paper, conventional
eight-noded three-dimensional linear isoparametric solid brick elements are used
for the structural discretisation to establish the DST model.

An important advantage of using isoparametric elements is that in the isopara-
metric formulation, the displacements are interpolated in the same way as the
geometry; i.e.

u =
m

∑
i=1

Niui; v =
m

∑
i=1

Nivi; w =
m

∑
i=1

Niwi (14.2)

where ui, vi, wi are the displacement components of the m element nodes.
To establish the coupling relationship between the two sets of FE meshes for

DST, for each node of the tow meshes, n(x,y,z), we need to first find the specific
global solid element inside which the tow node is located, and determine the local
coordinates (ξ ,η ,ζ ) of this tow nodal location within this global solid element by
Eq. (14.1), and then the coupling equations to be established for this tow node will
be in the form of the displacement interpolation functions, i.e. Eq. (14.2).

14.2.2 Material Models

Through the implementation of the coupling technique discussed above, the inde-
pendent tow FE meshes can be coupled into the global FE mesh. As all the elements
in the global mesh use the actual matrix material properties, to ensure that the two
phases of the superimposed materials in the tow space have the equivalent mechan-
ical properties of the actual tows, the “material properties” used in the tow elements
should be adjusted to reflect this scenario [5].

An isotropic elastic material model is used for the matrix material which forms
the global domain in DST. The stress-strain matrix in three dimensions is given by

[D]matrix =
E (1−ν)

(1 +ν)(1−2ν)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14.3)

where E and ν are the elastic modulus and Poisson ratio of the matrix material.
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For the actual tows, an orthotropic elastic model is used, and its stress-strain
matrix in three dimensions is given by

[D]tow =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν21
E2

ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G23

0

0 0 0 0 0 1
G13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(14.4)

where E1, E2, E3 are elastic moduli; ν12, ν13, etc. are Poisson ratios; and G12, G13,
G23 are elastic shear moduli.

The constitutive stress-strain matrix used for the tow element in DST analysis
is based on the difference between that of the actual tow material and the matrix
material, i.e.

[D]modeled tow = [D]tow − [D]matrix (14.5)

14.3 Numerical Analysis Results

To fully understand and validate the domain superposition technique, both DST and
traditional analyses were performed on a plain weave composite plate structure.
A commercial finite element analysis program (ANSYS) was used. The geom-
etry of the representative volume element (RVE) analyzed is given in Fig. 14.2.
The warp tows and the weft tows should touch at tow crossovers for a realistic
composite material, i.e. a = 0. For the sake of easy generation of the conven-
tional FE meshes, it is common practice to create an arbitrarily small resin gap
between the crossing tows in the geometric model. For example, the dimension
a = t/10 is used in this paper (Fig. 14.4). For all the analyses performed, an aver-
age unit tension load is applied in the warp direction on the two ends of the
RVE as shown in Fig. 14.2. Periodic boundary conditions are implemented in the
loading direction [6]. Eight noded brick elements are used throughout for the struc-
tural discretisation in the DST models. The material elastic constants used for the
numerical analysis are E = 3.5 GPa and ν = 0.35 for the matrix material, and
E1 = 138 GPa, E2 = E3 = 9 GPa, ν12 = ν13 = ν23 = 0.3 and G12 = G13 = G23 =
6.9 GPa for the tow material. The numerical analysis results are discussed in detail
in Sects. 14.3.1–14.3.1.2.
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Fig. 14.2 Geometric parameters for a RVE of a plain weave composite

14.3.1 Convergence Study of DST

Although the technique of embedding two-noded beams into solid elements such as
the “binary model” [1, 7, 9, 10] has the benefit of substantially smaller model size,
these models are mesh size dependent. That is to say, when the FE mesh is refined
further, the results will change continuously rather than converge to the real state as
the modelled structure should behave. In contrast, DST is mesh density objective,
i.e. the simulation results will converge if the meshes are fine enough. To understand
the performance of DST, a mesh sensitivity study has been performed. In order to
simulate a more realistic woven geometry, the gap size at the crossing tows in the
model used for the analysis is set to zero (a = 0). It would be extremely difficult
to build a proper FE mesh for this special case with touching tows at the crossover.
However this is no longer an issue for DST analysis.

14.3.1.1 Mesh Refining Scheme 1

In the first mesh refining scheme, both global and tow meshes are re-fined simul-
taneously. Typical DST finite element meshes used for the mesh effect study are
depicted in Fig. 14.3. The analysis results are given in Table 14.1. As desired, it can
be seen from this table that both stiffness and stress converge as the FE meshes are
refined.
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Fig. 14.3 DST finite element meshes (mesh refining scheme 1: refining both global and tow
meshes simultaneously, the gap size between crossing tows is a = 0)

Table 14.1 Convergence study of DST (mesh refining scheme 1: refining both global and tow
meshes simultaneously, the gap size between crossing tows is a = 0)

Mesh Tow mesh Global mesh Tensile Normalized
Density modulus maximum

(GPa) stress in tow

(Global) N ◦ of N ◦ of N ◦ of N ◦ of
× (Tow) node element node element
0.5×0.5 450 192 405 256 19.31 8.20
1×1 2,480 1,536 2,048 5,387 19.80 7.82
1.5×1.5 7,184 5,184 6,912 15,959 19.83 7.80
2×2 15,736 12,288 16,384 35,371 19.84 7.80

14.3.1.2 Mesh Refining Scheme 2

To study the effects of relative mesh density, in the second mesh refining scheme,
we keep the global mesh the same (of course, this mesh should be fine enough), and
only refine the tow meshes. The analysis results are given in Table 14.2. Once again
we can see that both stiffness and stress converge as the tow finite element meshes
are refined. This means that DST is not sensitive to the relative mesh refinement
between the global and the tow meshes. As long as the global and tow meshes
are both fine enough, the analysis results will converge. As a simple guideline for
establishing the DST model, the tow element size used should be comparable or
smaller than that of the global mesh.
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Table 14.2 Convergence study of DST (mesh refining scheme 2: global mesh re-mains the same,
only tow meshes refined, the gap size between crossing tows is a = 0)

Mesh Tow mesh Global mesh Tensile Normalized
Density modulus maximum

(GPa) stress in tow

(Global) N ◦ of N ◦ of N ◦ of N ◦ of
× (Tow) node element node element
1×0.5 450 192 2,048 5,387 19.64 8.08
1×1 2,480 1,536 2,048 5,387 19.80 7.82
1×1.5 7,184 5,184 2,084 5,387 19.83 7.80
1×2 15,736 12,288 2,084 5,387 19.84 7.80

(a) Tow geometry (b) Tow mesh

(c) Matrix geometry (d) Matrix mesh

(e) Composite Mesh

�
Resin rich
gap

�

Fig. 14.4 Unit cell geometry showing the resin rich gap between crossing tows a = t/10 and
traditional finite element meshes using 10-noded tetrahedral elements
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14.3.2 Comparison Between DST and Conventional FE Analysis

To further validate the domain superposition technique, both DST and traditional
FE analyses were performed based on a RVE geometry with a finite gap size of
a = t/10 to allow the standard FE model to be easily established (Fig. 14.4). DST
can easily use brick elements to discretise the woven composite geometry, whilst
tetrahedral elements have to be used to allow the commercial FE analysis program
to build a conventional FE mesh. Selected contour plots of the analysis results under
unit tension load are compared in detail in Fig. 14.5 for the two methods. The FE
mesh information for the two approaches and the results predicted are compared in
Table 14.3. It can be seen that both stiffness and local stress predicted from DST
correlate extremely well with those from the traditional FE analysis. It is also worth
noting that even using a very coarse mesh (855 nodes, see Table 14.3), DST still pre-
dicts reasonable results (only 1.8% error in stiffness, 3.7% error in stress) compared
with a traditional FE analysis (15,766 nodes). The number of nodes used in the DST
is as little as 5% of the traditional FE analysis.

Fig. 14.5 Comparison of results between DST and traditional FEA (same geometry is used for
both methods)
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Table 14.3 Comparison between DST and conventional FEA (the gap size between crossing tows
is a = t/10 to allow conventional FEA to work)

Model type Element Mesh density N ◦ of N ◦ of Tensile Normalized
type used (global) node elements modulus maximum

× (tow) (GPa) stress in tow

DST 8-noded 0.5×0.5 855 448 18.87 8.3
brick

DST 8-noded 1×1 4,528 6,923 19.29 7.9
brick

Conventional 10-noded – 15,766 23,430 19.21 8.0
FEA Tetrahedral

14.4 Conclusions

A novel domain superposition technique (DST) has been proposed to analyze com-
plex woven fabric composites. DST can avoid explicitly modelling the degenerated
volumes of resin rich regions between crossing tows and thus ease the requirement
of high quality geometric models. A mesh density effect study on the newly pro-
posed DST has been performed, and the numerical analyses show that the DST
analysis converges when the FE mesh is refined just as the traditional FE analysis
does. DST compares well with traditional FE analysis in terms of global stiffness
and stress distribution. It is easier to set up than conventional FE models and the
required model size to generate accurate results can be significantly smaller.
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Chapter 15
Numerical Simulation of Fiber Orientation
and Resulting Thermo-Elastic Behavior
in Reinforced Thermo-Plastics

H. Miled, L. Silva, J.F. Agassant, and T. Coupez

Abstract In this work, we describe a numerical technique to predict fiber orientation
during injection moulding of fiber reinforced polymers, and how the resulting part
behaves regarding this process induced orientation. The orientation state of a set
of fibers is described by a second order tensor. Its evolution is given by the Folgar
and Tucker tensorial hyperbolic equation. Even if this equation contains a fourth
order term, it may be expressed as a function of the second order tensor using a
closure approximation. The resolution of Folgar and Tucker’s equation is carried
out by a continuous approach based on the Standard Galerkin method, with stabil-
isation. The results are compared with experimental orientation measurements on
an injected plate. Once the part solidifies it is considered as a biphasic material,
composed by the fibers and the polymer matrix, where each phase has a linear elas-
tic behaviour. The thermo-elastic properties of the composite material are linked to
the fiber orientation and the properties of each phase using a homogenisation tech-
nique. Finally, to validate the previous study on the prediction of the thermo-elastic
properties at the solid state, a three-dimensional industrial case is deeply analysed.

15.1 Introduction

Fiber reinforced thermoplastics are currently applied in injection moulding due to
the enhancement of the part’s rigidity and resistance when subjected to mechanical
and thermal solicitations. The injection process induces an oriented layered structure
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for this type of composites and several studies [27, 28] have shown that orientation
depends on the flow characteristics. For example, in the vicinity of the injection
gate, the material’s flow front adopts a radial flow extension which is divergent and
one gets a transverse orientation compared to the flow direction. Far from the gate,
the shear rate is weaker and fibers preserve a state of orientation close to the initial
one. Solidification occurring near the wall contributes to the formation of a frozen-in
oriented layer. Near this layer, the shear rate is very important and fibers orient in the
flow direction. Beyond the ones referred, other parameters influence the orientation
state such as the injection speed or the holding pressure.

The most general descriptor of an oriented state is the probability distribution
function ψ

(
p,t
)

of orientation that represents the probability to find, at time t, a
fiber with axis oriented in the direction of the unit vector p. Computation of ψ
can be performed using the Fokker and Plank equation. However, the quantityψ is
difficult to handle numerically, and thus not commonly used; Hand [21] introduced
the second order (and more) orientation tensors, expressed as a function of ψ and
p, as a quantitative measure of the orientation state. Lipscomb et al. [31] combined
Jeffery [25] and Fokker and Plank equations to represent the evolution of the second
order orientation tensor by a convection-reaction equation, containing also a fourth
order tensor, which can be expressed as a function of the second order one using a
closure approximation. Folgar and Tucker [16] extended Lipscomb et al. equation
[31] by taking into account the interaction between fibers.

Orientation induced during processing will give rise to anisotropic mechanical
properties at the solid state. The macroscopic behaviour of unidirectional compos-
ites has been widely studied and we find several homogenisation models like the
Halpin-Tsai model [19, 20] the Auto-Coherent model [22], Eshelby model [13, 14]
and the Mori-Tanaka model [35]. These models consider that the reinforced ther-
moplastic is a biphasic material, composed by the fibers and the polymer matrix,
where each phase has a linear elastic behaviour. Nevertheless, few studies take into
account the orientation of the reinforcement, and mainly for isotropic distributions
reinforcements [6, 10, 39, 40]. Ashton et al. [3], Tsai et al. [41] and Fu et al. [17]
used the theory of laminates to predict mechanical properties for a two-dimensional
orientation distribution. Other authors [1,18,22] suggested a two level procedure to
determine the effective properties of the composite: firstly the unidirectional proper-
ties are evaluated, and then these properties are weighted by the probability density
function and then averaged for all fibers directions. This method was exploited
by [24, 30, 34] and required the computation of the probability density distribution.
Advani and Tucker [1] proposed an extension of the laminates theory by expressing
directly the stiffness tensor as a function of both the unidirectional properties of the
composite and the second order orientation tensor.

In this paper, we propose to predict the thermo-mechanical properties of fiber
reinforced thermoplastics injection moulded. Fiber orientation formulation and its
numerical resolution are presented in Sect. 15.2. The model considered was pro-
posed by Folgar and Tucker [16] and its numerical resolution is carried out using
the Standard Galerkin method. The Results are compared to those obtained using
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the Space-Time Discontinuous Galerkin method, applied by Redjeb et al. [36],
and the experimental ones, on an industrial test case. Once the part solidifies, we
consider an anisotropic elastic behaviour, described in Sect. 15.3. The goal is to
determine the effective elastic properties of the composite, for a given orientation
state (which is supposed not to be modified after the filling step of the injection
cycle). As proposed in the literature, our approach proceeds in two steps: first, using
homogenisation techniques, the unidirectional properties are determined; secondly,
the Advani and Tucker model [1] is used to compute the anisotropic mechanical
properties as a function of the unidirectional ones and of the second order orienta-
tion tensor. In Sect. 15.4, an industrial example is considered to show the feasibility
of this methodology for the prediction of the thermo-elastic properties in the solid
state.

15.2 Modelling Flow-Induced Fiber Orientation

15.2.1 Evolution Equation of Fiber Orientation

For a single fiber, the orientation can be classically described by a unit vector p
which indicates the direction of the fiber axis (Fig. 15.1):

The evolution of p for a single fiber in a Newtonian fluid was given by Jeffery
[25]:

∂ p

∂ t
+ v.∇p =Ω .p +λ

(
ε̇ p−

(
ε̇ : p⊗ p

)
p
)

(15.1)

where v is the local velocity of the fluid, Ω = (∇v−∇vt)/2 is the rotation tensor,
ε̇ = (∇v +∇vt)/2 is the strain rate tensor and λ is a function of the fiber aspect
ratio β :

λ =
β 2 −1
β 2 + 1

; β =
l
D

(15.2)

In this expression, l is the length of the fiber and D its diameter, supposed con-
stants. For a set of fibers, it is hard to follow each fiber but it is feasible to consider
the orientation distribution, given by a continuous functionψ(p,t), which represents

Fig. 15.1 Definition of the
vector p which characterizes
the orientation of a single
fiber [1]
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Fig. 15.2 Different values second order orientation tensor for a given set of fibers

the probability to find, at time t, a fiber which is oriented along p. The evolution of
this function is given by the Fokker and Plank equation:

∂ψ
∂ t

+
∂
∂ p

[
ψ

d p

dt

]
= Dr

∂ 2ψ
∂ p2 (15.3)

where d p/dt is the material derivative of p and Dr is the Brownian diffusivity. How-
ever, the resolution of Eq. 15.3 needs an accurate computation of d p/dt (which is
expressed as a function of the mean velocities) and requires important computational
resources. Hand [21] introduced the second and fourth order orientation tensors,
defined respectively as:

a =
∫ (

p⊗ p
)
ψ
(

p
)

d p =
〈

p⊗ p
〉

(15.4)

a =
∫ (

p⊗ p⊗ p⊗ p
)
ψ
(

p
)

d p =
〈

p⊗ p⊗ p⊗ p
〉

(15.5)

These tensors are symmetric and with unitary trace. Figure 15.2 shows the values
of the second order tensor, in 2D, for different orientation states.

Folgar and Tucker [16] modified Eq. 15.1 by introducing a Brownian term which
expresses the interaction between fibers. Adopting the same approach for the second
order orientation tensor equation, we obtain the following expression:

∂a

∂ t
+ v.∇a =

(
Ω a−aΩ

)
+λ
(
ε̇ a+ a ε̇−2ε̇ : a

)
+ 2dCI ε̇

(
a− 1

d

)
(15.6)

where d is the space dimension, ˙̄ε is the magnitude of the strain rate tensor, CI is a
dimensionless coefficient introduced by Folgar and Tucker [16] which is a measure
of the intensity of fiber interactions in the suspension. Prediction of the interaction
coefficient is hard to predict since orientation distribution must be known. Via simu-
lations, Folgar and Tucker found that a range of CI between 10−2 and 10−3 provides
a good fit to experimental data.

Equation 15.6 has a solution if the fourth order orientation tensor is known. The
fourth order tensor is the result of the resolution of a convection-reaction equation
in which there is a sixth order tensor, and so on. The problem can be simplified by
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using an adequate closure approximation which expresses the fourth order tensor as
a function of the second order tensor. Many closure approximations are proposed
in the literature [2, 11, 23, 32] and its choice depends on the strain rate and fiber
orientation. We consider in this paper the quadratic approximation:

a = a⊗a (15.7)

This approximation is exact for flows with high strain rate and where all fibers
are uniformly aligned in one direction [12].

15.2.2 Numerical Resolution of Folgar and Tucker’s Equation

The numerical resolution of Folgar and Tucker’s equation has been performed by
Kabanemi and Hétu [26] using the fourth order Runge-Kutta method, by Martinéz
[33] with the method of characteristics, and Redjeb et al. [36] with a Space-Time
Discontinuous Galerkin scheme.

We present a different numerical approach based on a stabilised Galerkin method,
using a continuous approximation of the orientation tensor. The Folgar and Tucker
equation’s can be re-written:

∂a

∂ t
+ v.∇a+ B

1
.a+ a.B

2
+ 2λ

(
a : ∇v

)
a+

1
θ

(
a− 1

d

)
= 0, Ω × ]0,τ[ (15.8)

where τ is the simulation time and Ω denotes the spatial computational domain,
we denote also by ∂Ω the border and ∂Ω l is the reentrant flow border. We note
P the functional space of symmetric tensors with components in L2(Ω), and V the
functional space of symmetric tensors for which the derivative is in L2(Ω).

For the temporal term in Eq. 15.8, we use an implicit Euler scheme. Because
of the term (a : ∇v)a, Eq. 15.8 is non linear. The following approximation is then
considered: (

a : ∇v
)

a ≈
(

at−∆ t : ∇v
)

at (15.9)

Using this approximation and the temporal scheme, the problem can be rewritten
as shown in the following expression:

1
∆ t

at + v.∇at︸ ︷︷ ︸
transport term

+B
1
.at + at .B

2︸ ︷︷ ︸
rotation term

+
(

2
(

at−∆ t : ∇v
)

+
1
θ

)
︸ ︷︷ ︸

reaction term

at =
1

3θ
+

1
∆ t

at−∆ t︸ ︷︷ ︸
second member

on Ω

(15.10)
with initial and boundary conditions:

a(x,t = 0) = F (x)

a is known on∂Ω l ⊂ ∂Ω at each instant t
(15.11)



www.manaraa.com

298 H. Miled et al.

Each member of Eq. 15.10 is multiplied by a test function a∗ chosen in V and
integrated on the domain Ω which leads to the weak formulation. The hyperbolic
character of the orientation equation provides well known oscillating solutions when
the Standard Galerkin method is used. Stabilization techniques have been developed
to overcome this problem. Residual Free bubble (RFB) and Streamline Upwind
Petrov-Galerkin (SUPG) methods have been implemented and are used in this paper.

The Streamline Upwind Petrov-Galerkin method (SUPG) [8] consists in replac-
ing the test function a∗ by another function ã∗ defined as:

ã∗ = a∗ + ζv.∇a∗ (15.12)

where ζ is a perturbation coefficient. For the consistency of the solution, ζ is taken
equal to hm/‖2v‖ where hm is the mean mesh size. Since the main cause of oscil-
lations is a dominant convection term, the perturbation of the original a∗ function
decreases the effect of convection by adding a diffusive term. This scheme stabilizes
the solution and is also consistent.

The Residual Free Bubble method (RFB) is inspired by a class of multi-scale
methods using functional spaces enriched by bubble functions [7]. Its principle con-
sists in finding the solution of the weak problem on the functional space V RFB, such
that:

V RFB = V ⊕VB (15.13)

where VB is the bubble space. Each element a
h
∈ V RFB is then the sum of a linear

quantity a
L
∈V and a bubble function a

B
∈VB.

a
h
= a

L
+ a

B
(15.14)

Brezzi et al. [7] showed that for convection equations, SUPG and RFB meth-
ods are equivalents if the bubble function is condensed. These two methods were
compared to the Galerkin method for the flow of fiber reinforced Newtonian fluid
between parallel plates (Fig. 15.3).
η denotes the viscosity of the polymer which is supposed constant and equal

to 1,000 Pa.s. Profile of local velocity of the polymer is considered parabolic; we
suppose that orientation is initially isotropic and that the orientation tensor is main-
tained isotropic at the entry. Results obtained by the Galerkin Standard method are
compared to the ones obtained using stabilization methods for the computation of
the first orientation tensor component a11 (Fig. 15.4).

Fig. 15.3 Two-dimensional Poiseuille flow
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Fig. 15.4 Distribution of the first orientation tensor component a11 with Galerkin method, Galerkin
associated with RFB method and Galerkin associated with SUPG method

Fig. 15.5 Mould schematic view

Profiles of a11 obtained by the Galerkin method, the SUPG method and the
RFB method are very similar. However, the use of stabilisation methods reduces
oscillations generated by the Galerkin method and gives a more regular profile.

15.2.3 Validation on an Industrial Part

The approach presented previously was implemented on the injection moulding
software Rem3D, developed at the Center for Material Forming of the Ecole des
Mines de Paris.

We consider the injection moulding of a three-dimensional plate, and in partic-
ular we study the orientation development near the injection gate. Dimensions of
the plate are given in Fig. 15.5. Only half of the plate will be considered in the
simulation, since the geometry presents a symmetry plane.

The polymer is a polyarylamide (Solvay Ixef 1022) reinforced with 50% weight
(31.6% volume) glass fibers. The fiber aspect ratio is considered constant and equal
to 10, and the interaction coefficient is equal to 10−2. The injection is done at a
flow rate of 20 cm3/s and the initial polymer temperature is 270◦C. The mould
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temperature is kept constant to 130◦C. The temperature balance equation is:

ρCp

(
∂T
∂ t

+ v.∇T

)
= div(k∇T )+ ẇ (15.15)

ρ is the volume density, Cp is specific heat, k is the thermal conductivity and ẇ
is the viscous dissipation. These properties are considered not dependant from the
induced flow anisotropy.

For short fiber reinforced materials, the flow becomes viscoelastic and the stress
tensor is expressed as a function of the fourth order orientation tensor [5]:

σ = 2η
(

˙̄ε,T
)[
ε̇+ Np

(
a : ε̇
)]

− p1 (15.16)

where η( ˙̄ε,T ) is the temperature-dependent viscosity due to both the polymer
matrix and fibers. The induced anisotropy is represented by the parameter Np which
depends on the fiber concentration and on the fiber aspect ratio, and is difficult to be
predicted. Thus, its contribution to the material’s rheology is not taken into account
in this work. As a consequence, the problem is considered governed by the Navier
and Stokes equations:

ρ
(
∂v
∂ t

+(v.∇)v

)
= −∇p +∇.

(
2ηε̇
)

+ f

∇.v = 0

(15.17)

p is the polymer’s pressure and f are the body forces (such as gravity). We
suppose that the viscosity is given by the Carreau-Yasuda law [9, 43]:

η( ˙̄ε,T ) = η0(T )

[
1 +
(
η0(T )

˙̄ε
τs

)α]m−1
α

(15.18)

where α and m are constant parameters, and η0(T ) represents the temperature
dependency, following the Arrhenius law:

η0 (T) = η0 (Tref) .exp

[
β
(

1
T
− 1

Tref

)]
(15.19)

The velocity-pressure mechanical problem is solved using the mixed finite ele-
ment method with the P1+/P1 element and the thermal problem using a classical
Galerkin formulation. Both problems are weakly coupled: at each time increment,
the temperature-dependant viscosity used is the one computed at time t −∆ t. Fur-
thermore, the position of the flow front is advected using a Level set technique [4].
Parameters used in Eqs. 15.15, 15.18 and 15.19 are given in Table 15.1.
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Table 15.1 Parameters used in Eqs. 15.15, 15.18 and 15.19

τs 8.18 10−2 MPa

η0 (Tref) 270 Pa.s
α 0.55
m 0.4
Tref 549 K
β 7,764 K
k 0.3 W/m.K
Cp 1,766 J/Kg.K
ρ 1,522 Kg/m3

Fig. 15.6 Sensors on the plate symmetry plan

Table 15.2 Computation time for discontinuous and continuous approaches

Assembly time Resolution time Computation time

Continuous approach 2 days, 12 hours, 15 hours, 3 days, 3 hours
42 minutes 17 minutes
Discontinuous approach 8 hours, 3 days, 5 hours, 3 days, 13 hours,
29 minutes 15 minutes 44 minutes

The experimental measurements [42] of the orientation gives, for example, the
distribution of the first component, a11, of the orientation tensor on three sensors
(see Figs. 15.5 and 15.6).

In what concerns simulation data, orientation is supposed isotropic at the cavity
inlet. The orientation problem is solved after the thermal and the mechanical prob-
lems. All computations are carried out on an anisotropic mesh of 165,000 nodes
and 902,000 elements. Computations were launched on 12 processors; each one has
2.4 GHz frequency and 2 GB RAM, with a time step equal to 10−4 s. Resolution,
assembly and computation times are shown in Table 15.2. In this case, continuous
versus discontinuous approaches are compared.

If a discontinuous approximation of the orientation tensor is considered [36], the
orientation tensor is approximated per element P0, whereas in the continuous case
P1 (nodal) approximation is used. The number of nodes is 5.5 times lower than the
number of elements for a three-dimensional mesh, and thus the memory space is
then less important with the second approach.
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Fig. 15.7 Comparisons between experimental and numerical results on sensors C1, C2 and C3

The number of unknowns is 902,000 for a discontinuous approach whereas it is
only 165,000 for the discontinuous one. This difference can explain the time saving
of the resolution process. In the continuous approach, the size of the local matrix is
equal to the one of the discontinuous approach times the square of the number of
nodes per elements. Therefore the assembly time is much more important for the
continuous approach.

The experimental and numerical results are plotted for the first component of the
orientation tensor (Fig. 15.7).

The comparison between the two numerical results shows that the orientation
profile is better captured on the center of the mould with the continuous approach
than with the discontinuous one.

The experimental results do not match quantitatively with the numerical ones. A
possible explanation lies with the choice of the interaction term CI , the other with
the choice of the closure approximation. In fact, this approximation is not exact
since a range of fibers, especially in the center of the mould, are not aligned in a
single direction.

15.3 Predicting Thermo-Elastic Properties of the Composite

In this section, a two levels approach is proposed to determine the thermo-mechani-
cal properties of the composite as a function of the local fiber orientation. This
approach consists, first, on determining the properties of the composite having the
fibers aligned in a single direction (unidirectional properties), and then the average
of these properties with the fiber orientation distribution is performed.
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The thermo-elastic behaviour law is:

σ = Cc(T ) :
(
ε−αc(T )∆T

)
(15.20)

where T denotes the temperature of the composite, Cc is the fourth order stiffness

tensor of the composite, αc is the thermal expansion tensor and ∆T is the difference
between initial and final temperature distributions.

In what follows we will predict Cc and αc. Fibers and polymer matrix are sup-

posed to have, each one, an isotropic linear elastic behaviour with respectively
Young Modulus E f and Em, and Poisson ration ν f and νm. These properties may
be temperature dependent.

15.3.1 Unidirectional Properties

This step is achieved by means of micromechanical models, fibers are assumed
aligned in the 1-direction. The determination of the stiffness tensor for unidi-
rectional properties is equivalent to find five independent elastic constants: the
longitudinal Young modulus E1, the transverse young modulus E2, the in-plane (1,2)
shear modulus G12 and the Poisson ratios ν12 and ν23. For the expansion tensor, only
two coefficients are needed: the longitudinal thermal expansion coefficient α1 and
the transverse thermal expansion coefficient α2.

Fibers are considered as ellipsoidal inclusions where the revolution axis is sup-
posed to be the 1-axis (Fig. 15.8). Ellipsoid parameters are s1, s2 and s3 such that:
s1 = s2 ≤ s3. The fiber aspect ratio can be defined as: β = s3

s1
.

Many micromechanical models in the literature are based on this representation
for fibers. In this paper, three micromechanical models are presented to estimate the
elastic properties:

• The Halpin-Tsai model [19, 20]

The computation of an elastic property M, is performed by means of the follow-
ing equation:

M
Mm

=
1 + ζrηVf

1−ηVf
; η =

Mr −1
Mr + ζr

(15.21)

Fig. 15.8 Fiber can be
assimilated to an ellipsoidal
inclusion
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Table 15.3 Property M (Eq. (15.21)) with empirical parameter

M Mf Mm ζr

E1 E f Em 2β
E2 E f Em 2
G12 G f Gm 1

G23 G f Gm
Km
Gm

/
(

Km
Gm

+2
)

ζr is an empirical parameter, Mr = Mf /Mm where Mf and Mm are respectively the
fibers and the matrix used for the computation of the property M. These parameters
are listed in Table 15.3.

Where Km is the matrix bulk modulus, Gm and G f are respectively the matrix
and fiber shear modulus. The Poisson ratio is expressed by means of the transverse
Young modulus E2 and the in-plane (2,3) shear modulus G23:

ν23 =
E2

2G23
−1 (15.22)

ν12 is computed using a mixture law:

ν12 = Vfν f +
(
1−Vf

)
νm (15.23)

Vf denotes the volume fraction of fibers.

• The Eshelby model [13, 14]

This model supposes that each reinforcement is surrounded by an infinite domain
with properties similar to those of the polymer matrix, and that no interaction exists
between the reinforcements. The unidirectional stiffness tensor is given by:

CUD = Cm −Vf

(
C f −Cm

)
AEshelby (15.24)

Cm and C f are respectively the matrix and fibers stiffness tensors. AEshelby is the

strain concentration tensor obtained from the Eshelby Tensor E [13]:

AEshelby =
[

1+ E.Cm−1
.

(
C f −Cm

)]−1

(15.25)

• The Mori-Tanaka model [35]

The unidirectional stiffness tensor is given by:

CUD = Cm −Vf

(
C f −Cm

)
AMT (15.26)
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where the strain concentration tensor AMT is expressed by means of AEshelby:

AMT = AEshelby.

[(
1−Vf

)
1+Vf A

Eshelby
]−1

(15.27)

This model is more efficient than the Eshelby model because it takes into account
the interaction between fibers and so it is able to account for a large number of
fibers.

The estimation of the thermal properties is done after determining the mechan-
ical properties. Levin [29] expressed the thermal expansion tensor as a function of
respectively compliance tensor and thermal expansion tensors of fibers and matrix,
and the effective compliance tensor of the composite. This approach can be used
to predict directly the anisotropic thermal properties if the anisotropic compliance
tensor is known. Scharpery [37] evaluated the longitudinal and transverse thermal
expansion coefficients by means of fibers and matrix thermo-elastic properties, fiber
concentration and the Poisson ratio ν12.

15.3.2 Anisotropic Properties

For an unidirectional composite with fibers aligned in the direction of p, each
component of the stiffness tensor can be written as:

CUD
i jkl

(
p
)

= b1 pi p j pk pl + b2 (pi p jδkl + pk plδi j)+ b3
(

pi pkδ jl + piplδ jk

+a jkδil + p j plδik
)
+ b4(δi jδkl)+ b5

(
δikδ jl + δilδ jk

)
(15.28)

where δi j is the Kronecker symbol, and the five constants b1, ...,b5 are related to the
standard components of the stiffness tensor with fibers oriented along the 1-axis:

b1 = CUD
1111 −2CUD

1122−4CUD
1212 +CUD

2222

b2 = CUD
1122 −CUD

2233

b3 = CUD
1212 −

1
2

(
CUD

2222 −CUD
2233

)
(15.29)

b4 = CUD
2233

b5 =
1
2

(
CUD

2222 −CUD
2233

)
For the more general case of a composite with anisotropic fiber distribution, the

effective stiffness of the composites is given by:

Cc =
∫
Ω

CUD (p)ψ (p)dΩ (15.30)
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Eqs. 15.28 and 15.30 lead to the Advani and Tucker model [1] which expresses
the effective stiffness tensor as a function of the second and fourth orientation
tensors:

Cc
i jkl

(
p
)

= b1ai jkl + b2 (ai jδkl + aklδi j)+ b3
(
aikδ jl + ailδ jk + a jkδil + a jlδik

)
+b4 (δi jδkl)+ b5

(
δikδ jl + δilδ jk

)
(15.31)

An averaging on the compliance tensor gives an expression of the anisotropic
tensor which is similar to Eq. 15.31, with five constants m1, ...,m5:

Sc
i jkl = m1ai jkl + m2 (ai jδkl + aklδi j)+ m3

(
aikδ jl + ailδ jk + a jkδil + a jlδik

)
+m4 (δi jδkl)+ m5

(
δikδ jl + δilδ jk

)
(15.32)

In spite of SUD being the inverse of CUD, the effective compliance tensor is not

the inverse of the stiffness tensor given by Eq. 15.31. This represents the weak-
ness of the two levels approach. Many authors [18, 34], prefer to use the stiffness
tensor to describe the anisotropic properties because of his better agreement with
experiments.

The effective thermal expansion tensor can be also expressed as a function of the
second order orientation tensor [1]

αc = P1a + P21 (15.33)

P1 and P2 are two constants related to the unidirectional thermal properties:

P1 = α1 −α2

P2 = α2
(15.34)

15.4 Results and Discussion

15.4.1 Choice of a Micromechanical Model for the Unidirectional
Properties

In order to compare the three models listed in Sect. 15.3, a composite reinforced
by spherical inclusions is considered (β = 1). The predicted longitudinal Young
modulus is compared to experimental measurements conducted by Simth [38].
The Young’s modulus of the matrix and particles are respectively Em = 3 GPa,
νm = 0.4, E f = 76 GPa, and ν f = 0.23. The comparison between predicted and
effective longitudinal Young modulus is done for increasing fiber volume fractions
(Fig. 15.9).

Figure 15.9 shows that Mori-Tanaka model gives the better prediction of the
longitudinal Young modulus for volume fraction going up to 20–30%.
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Fig. 15.9 Longitudinal Young modulus given by experimental and micromechanical models for
spherical inclusions [38]

Fig. 15.10 Longitudinal Young modulus given by experiment and micromechanical models for
ellipsoidal inclusions [15]

Another comparison is done on the high-density polyethylene (HDPE) reinforced
by glass fibers. The Young’s modulus and the Poisson ratio of the matrix and par-
ticles are, respectively, Em = 1.04 GPa, νm = 0.34, E f = 72.5 GPa, and ν f = 0.2.
The fiber aspect ratio is supposed constant and equal to 16 (ellipsoidal inclusions).
Figure 15.10 shows a comparison between prediction and experimental data [15]
for the longitudinal Young modulus.

In that case, the better prediction of the longitudinal Young modulus is given by
the Mori-Tanaka model. As a consequence, this model will be used for the prediction
of the unidirectional properties.
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15.4.2 Effective Properties of a Three-Dimensional Plate

Simulations were performed on the example presented in Sect. 15.2.3. After predic-
tion of the second order orientation tensor, we propose to compute the mechanical
properties distribution on the plate of the Solvay Ixef 1022, once the part ejected.
Influence of temperature is neglected in this study as well as the dilatation coeffi-
cients. The Young modulus and the Poisson ratio of the matrix and fibers, at the
ambient temperature, are respectively Em = 4 GPa, νm = 0.36, E f = 74 GPa, and
ν f = 0.25.

The five mechanical constants of the unidirectional composite are computed
using the Mori-Tanaka model, and are found equal to: E1 = 20.78 GPa, E2 = 7.15
GPa, ν12 = 0.33, ν23 = 0.46, and G12 = 3.52 GPa.

The unidirectional stiffness tensor is determined as a function of these five elastic
constants and then using Eqs. 15.29 and 15.31, the effective stiffness tensor of the
composite is predicted. Components Sc

i jkl of the effective tensor can be computed by
inversing the obtained stiffness tensor. We can then define the elastic modulus E11,
E22 and E33 as:

E11 =
1

Sc
1111

; E22 =
1

Sc
2222

; E33 =
1

Sc
3333

(15.35)

Figure 15.11 shows the anisotropic Young modulus E11, E22 and E33 in directions
1, 2 and 3, respectively. In the vicinity of the plate walls, fibers are oriented in the
flow direction (1-direction), this orientation induces a maximum value of E11, which
is close to the Young modulus E1. The minimum of E11 is reached at the center of
the part (since a11 is weak in this area). We infer that the rigidity of the composite in
the 1-direction is stronger in the vicinity of the plate walls than at its center. Young

Fig. 15.11 Distribution of the elastic modulus E11, E22, and E33
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Fig. 15.12 Conditions imposed on the plate for a static deformation test

modulus E22 and E33 are weak compared to E11, which means that an important
rigidity was added in the flow direction.

The plate is now subjected to a simple traction in the 1-direction, as shown in
Fig. 15.12. The plate is fixed at the other extremity, near the injection gate.

To solve the mechanical problem, the behaviour law is rewritten as following:

σ = Cc : ε− (q + ξ∇.u)1 (15.36)

where u denotes the displacement and q and ξ are a scalar numbers taken such as:

q + ξ∇.u = 0 (15.37)

The mechanical problem to be solved is then:

∇.

(
Cc : ε(u)− ξ (∇.u)1

)
−∇q + fv = 0

∇.u+
1
ξ

q = 0

(15.38)

where fv are the body forces.
Equation 15.38 takes the advantage to deal with the isotropic case when the

material is incompressible. In fact, for an isotropic material, Eq. 15.38 is rewritten
as:

∇.
(

2µε(u)+ (λ − ξ )∇.u1
)
−∇q + fv = 0

∇.u+
1
ξ

q = 0
(15.39)

where λ and µ are the Lame coefficients, defined as a function of the Young
modulus and the Poisson ratio:

µ =
E

2(1 +ν)
; λ =

νE
(1−2ν)(1 +ν)

(15.40)
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Fig. 15.13 Comparisons between isotropic and anisotropic fiber distribution on the first displace-
ment component

Incompressibility is defined by a Poisson ratio close to 0.5 which is equivalent
ton an infinite value for the Lame coefficient λ . The coefficient ξ is then taken as
following:

ξ =
d.λ + 2µ

d
(15.41)

For isotropic incompressible case, Eq. 15.39 becomes:

∇.

(
2µε (u)− 2µ

d
∇.u1

)
−∇q + fv = 0

∇.u = 0
(15.42)

The general case (Eq. 15.38), the problem is solved using the mixed finite
element method with the element P1+/P1 for (u,q).

The computed displacements were compared for isotropic and anisotropic ori-
ented fibers. Comparisons were done on the first displacement component, u1,
measured along the one-axis of the plate, at the symmetry plane. Figure 15.13 con-
firms that fibers increase the plate rigidity in the flow direction: in the anisotropic
case, the displacement is lower than in the isotropic case.

15.5 Conclusion

In this work, an approach for prediction of the thermo-elastic properties of fiber rein-
forced thermoplastics is presented. Fiber orientation is described by a second order
orientation tensor which is the solution of a tensorial convection-reaction equation.
Its resolution is carried out by a continuous approach based on the Galerkin Standard
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method. To overcome the instabilities generated by this method, because of the
dominant convection term, two stabilisation methods were used: SUPG and RFB.
These methods were tested on a three-dimensional injection plate and compared to
a discontinuous approach and the experimental results. Once the orientation shape
is computed at the end of the filling step, the prediction of the mechanical prop-
erties is performed. A two levels approach was proposed; first the unidirectional
properties are carried out by mean of micromechanical models, and second, these
properties are averaged to give the effective properties as a function of the orienta-
tion distribution. Three micromechanical models were compared with experimental
data on the prediction of the longitudinal Young modulus: Halpin-Tsai, Eshelby and
Mori-Tanaka models for spherical and ellipsoidal particles. Results given by the
Mori-Tanaka model were the more consistent with experimental data.

Simulations were done on the three-dimensional injection plate, for which the
orientation tensor distribution was predicted. The Advani and Tucker model was
combined with the Mori-Tanaka model for the prediction of the mechanical behaviour
which takes into account the orientation distribution. Results show clearly that the
part becomes more rigid in the direction of fiber orientation.

Next developments, in the Rem3D project, will deal with the coupling between
rheology and fiber orientation in the filling step. The prediction of the thermo-elastic
properties will be carried out by Finite Elements methods. In fact, for a given fiber
orientation, the stiffness tensor is then computed by mean of numerical solicitations.

Acknowledgements The authors acknowledge The Rem3D consortium which includes: Cemef,
Schneider Electrics, Arkema, Snecma Porpulsion Solide, Dow Chemical, Rhodia and Transvalor
for its financial support. They thank also M. Vincent for experimental results done on the measure
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